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The signal-to-noise ratio for room-temperature readout of individual qubits can be substantially improved by
taking an indirect route through intermediate energy levels.
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Electronic and nuclear spins in insulating crystals in-
teract weakly with their environments, making them
candidate systems for applications in quantum infor-
mation processing [1, 2]. Several features of the ni-
trogen vacancy (NV−) center in diamond (see Fig. 1)
make it ideal for this purpose, as well as for sensitive
magnetometry [3, 4]: The electron spin has been shown
[5] to store quantum information for longer than any
other solid-state system at room temperature. Addi-
tionally, this spin state can be partially initialized to a
useful starting state simply by the application of light
[6]. The same light excites spin-dependent fluorescence
[7] bright enough to study single centers at room tem-
perature [8]. Performing these experiments at low tem-
peratures has even made it possible to readout the spin
state of a single center [9]; to qualify as spin state read-
out, the signal averaging must be completed before the
spin state information is destroyed.

For room-temperature single NV− demonstrations to
date, the signal-to-noise ratio obtained before destroy-
ing a spin state is only ∼ 0.1, preventing single spin
state readout, and requiring signal averaging over many
runs. The desire to go beyond this has led several
groups to develop novel readout techniques. One re-
cent technique uses nearby isotopes, 13C nuclear spins,
to store the electronic spin state before using the same
electronic spin to repeatedly readout the state of the 13C
spins [10]. This repeated readout technique works be-
cause the nuclear spins are disturbed less than the elec-
tron spins by the fluorescence measurement process. An
improvement in the signal-to-noise by a factor of 2.2 was
hence shown, but a different NV− center with a different
distribution of nearby 13C spins would require a modi-
fied technique and produce different signal-to-noise.

A paper published in the latest issue of Physical Re-
view B presents an alternative readout technique that

FIG. 1: Protocol for improving the readout signal from a sin-
gle nitrogen-vacancy (NV−) center in diamond: NV− centers
arise when a substitutional nitrogen atom (N) is next to a va-
cancy (V) as shown in the inset. The traditional readout tech-
nique used by most researchers to date is shown schematically
as Route 1, which connects the two states that form the logi-
cal qubit without involving the nuclear spin state of the 14N.
However, by driving the system along route 2 and then 3, the
signal-to-noise is increased by

√
3. This technique is univer-

sal because it works for an NV− center in any local environ-
ment. The states are labeled by |electron spin state, 14N nu-
clear spin state〉. Routes 1 and 3 proceed via the excited states,
and route 3 requires a level anticrossing (LAC) in the excited
states, reached by the application of a 50 mT magnetic field.
(Illustration: Alan Stonebraker)

makes use of the 14N nuclear spin that is almost uni-
versally present in NV− centers [11]. Matthias Steiner,
Philipp Neumann, Johannes Beck, Fedor Jelezko, and
Jörg Wrachtrup from Stuttgart University, Germany,
have thereby demonstrated a signal-to-noise enhance-
ment by a factor of

√
3. Most parade routes are designed

to emphasize high visibility of the marchers and digni-
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taries rather than the shortest path from start to finish,
and a similar approach has been applied to qubit read-
out by the Stuttgart group.

Two electron spin states are used as the logical qubit
(or the magnetic sensor), and each of these is split into
three by the I = 1 14N spin as shown in Fig. 1. Spin
selection rules limit the allowed transitions between the
six levels and the traditional readout of the qubit state
proceeds along route 1 from | − 1, +1〉 to |0, +1〉 via the
excited states. To enhance the readout signal, the en-
ergy levels are modified by applying a magnetic field of
50 mT along the symmetry axis of the NV− center (see
inset of Fig. 1). This brings the system to a level anti-
crossing (LAC) in the excited state where the two elec-
tron spin states have the same energy [12]. The excited
state is accessed by the application of light for the flu-
orescence readout, and the LAC permits transitions be-
tween the logical qubit states. With the 50 mT field on,
the application of light polarizes not only the electron
spin but also the nitrogen nuclear spin [13].

To prepare for the enhanced readout, the system is co-
herently driven along route 2 (see Fig. 1) by the applica-
tion of rf radiation. Then, as a result of the LAC and
spin-selection rules, the fluorescent readout leads the
system along route 3. Route 3 is three times longer than
route 1, and each step proceeds via the excited states.
Three times more signal is detected as a result of this
indirect series of events. Taking the indirect route post-
pones the destruction of the original spin state informa-
tion. This “destruction” of the information is actually
useful to NV− researchers, as the system is left in a po-
larized spin state, which is a convenient starting state
for these experiments [6].

To carry out the enhanced readout, it was necessary
to coherently manipulate the 14N nuclear spin (route 2),
and the success of this shows that this spin could be a
useful qubit also. The first demonstration of coherent
control over a single 14N spin has been carried out si-
multaneously by researchers at Bates College, US [14].
Their work also uses the LAC but describes the possi-
bility of reading out single nuclear qubits that could be
15N, 14N, or 13C, all via the NV− electron spin.

A complementary approach to room-temperature
spin state readout of a single NV− center is simply to

collect more of the fluorescent light emitted. This can
be achieved by putting a nanocrystal of diamond into
a cavity, which efficiently couples photons to the detec-
tor [15]. Combining a cavity experiment with one of the
enhanced measurement protocols described here could
allow researchers to ask what spin state a NV− is in at
room temperature.

Beyond this goal lies the broader challenge of dia-
mond quantum computing, which will require progress
in scalable techniques for controllably coupling spins.
The three-spin experiments performed already [16] are
impressive but do not appear to scale up to many qubits.
It may be possible to overcome this by using control
spins to turn couplings on and off [17], or even by en-
tangling distant qubits with photon measurements [18].

The prospect of a room-temperature quantum com-
puter in the solid state is likely to attract even more sci-
entists to the NV− parade and the indirect readout route
described by Steiner et al. may be part of the finale.
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