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Analysis of quantum coherence in bismuth-doped silicon: A system of strongly coupled spin qubits
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There is a growing interest in bismuth-doped silicon (Si:Bi) as an alternative to the well-studied proposals
for silicon-based quantum information processing (QIP) using phosphorus-doped silicon (Si:P). We focus here
on the implications of its anomalously strong hyperfine coupling. In particular, we analyze in detail the regime
where recent pulsed magnetic resonance experiments have demonstrated the potential for orders of magnitude
speedup in quantum gates by exploiting transitions that are electron paramagnetic resonance (EPR) forbidden at
high fields. We also present calculations using a phenomenological Markovian master equation, which models
the decoherence of the electron spin due to Gaussian temporal magnetic field perturbations. The model quantifies
the advantages of certain “optimal working points” identified as the df /dB = 0 regions, where f is the transition
frequency, which come in the form of frequency minima and maxima. We show that at such regions, dephasing
due to the interaction of the electron spin with a fluctuating magnetic field in the z direction (usually adiabatic)
is completely removed.
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I. INTRODUCTION

Beginning with the seminal proposal by Kane,1 there
has been intense interest for over a decade in the use of
Si:P (Ref. 2) as qubits for quantum information processing.
This donor-impurity spin-system continues to demonstrate an
ever-increasing list of advantages for manipulation and storage
of quantum information with currently available electron para-
magnetic resonance (EPR) and nuclear magnetic resonance
(NMR) technology. The Si:P system has four levels due to the
electron spin S = 1/2 coupled to a 31P nuclear spin I = 1/2.

The key advantages are the comparatively long decoherence
times, which have been measured to be of order milliseconds
for the electron spin for natural Si:P. They are of order of
seconds for the nuclear spin, so the nuclear spin has been
identified1 as a resource for storing the quantum information.
For all but the weakest magnetic fields (i.e., B0 � 200 G),3

the electron and nuclear spins are uncoupled so they may be
addressed and manipulated independently by a combination of
microwave (mw) and radio-frequency (rf) pulses, respectively.
The two possible electron-spin transitions correspond to EPR
spectral lines, while the nuclear spin transitions are NMR lines.
Nuclear spin flips are much slower: a π pulse in the NMR
case is orders of magnitude longer than for the EPR-allowed
transitions.

However, over the last year or so, there has also been
increasing interest in another shallow donor impurity in silicon,
the bismuth atom.4–8 The Si:Bi system is unique in several
respects: it is the deepest group V donor with a binding energy
of about 71 meV, it has a very large nuclear spin, I = 9/2,
it has an exceptionally large hyperfine coupling strength,
A/2π = 1.4754 GHz. 209Bi is the only naturally-occurring
isotope. Recent measurements of the decoherence times in
natural silicon have revealed T2 (transverse relaxation time)
times of order 30% larger than for Si:P, an effect attributed to
the smaller Bohr radius of Si:Bi.5 The dominant decoherence
process is the spin diffusion,9,10 associated with the I = 1/2,
29Si nuclei occupying just under 5% of sites in natural silicon;

the dominant 28Si isotope has no nuclear spin and thus does not
contribute to the dipole-coupled flip-flop process that drives
the spin diffusion. A recent study of P donors in 28Si, purified
to such a high degree (less than 50 ppm of 29Si) that spin
diffusion may be neglected, revealed T2 times potentially up
to 10 s.11 Although studies of isotopically enriched Si:Bi
have yet to be undertaken, since both species share the same
29Si decoherence mechanism, T2 times of the same order
may be expected. The coupling with 29Si was investigated in
Ref. 8. The very large nuclear spin I = 9/2 and associated
large Hilbert space may provide a means of storing more
information.4 Efficient hyperpolarization of the system (to
about 90%) was demonstrated experimentally in Ref. 6.

The present study investigates the implications of the
very large hyperfine coupling, A/2π = 1.4754 GHz of Si:Bi
as well as its large nuclear spin. Mixing of the Zeeman
sublevels |mS,mI 〉, achieved in the regime where the hyperfine
coupling competes with the external field, which we call
the “intermediate-field regime,” is not unexpected and has
even been investigated for Si:P for weak magnetic fields.3

However, for Si:Bi, this regime is attained for magnetic fields
B � 0.1–0.6 T, which are moderate, but within the normal
EPR range. In a previous paper,7 we identified interesting
consequences in this range of magnetic fields. Because the
Rabi oscillation speed of a spin is dependent on its coupling
strength to an external oscillating magnetic field, and the ratio
of nuclear to electron coupling strengths is 2.488 × 10−4, EPR
pulses are orders of magnitude faster than NMR ones. We
identified a set of four states of Si:Bi, which are, at high
fields, entirely analogous to the four-level subspace of Si:P.
At the stated magnetic field range, all four possible transitions
required for two-qubit universal quantum computation may
be driven by fast EPR pulses (on a nanosecond timescale),
while in Si:P, two of the transitions require slow NMR
pulses. A recent experimental study using an S-band (4 GHz)
pulsed EPR spectrometer12 demonstrated the possibility of this
strategy in Si:Bi.
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Furthermore, we identified a set of special magnetic field
values: we show that here, the effect of the external field is
wholly or partly canceled by a component of the hyperfine
interaction. We refer to this set of field values as “cancellation
resonances.” We show that the cancellation resonance points
are closely associated with minima and maxima of the EPR
spectral frequencies, (i.e., where df /dB = 0). We discuss
an interesting analogy with the electron spin echo envelope
modulation (ESEEM) phenomenon of “exact cancellation”13

where like for the cancellation resonances, the system Hamil-
tonian takes a simpler form. In exact cancellation, this leads
to insensitivity to certain types of ensemble averaging. In
Ref. 7, it was found that an analogous insensitivity to ensemble
averaging over spin-exchange perturbations was seen at these
points.

Here, we investigate decoherence near the df /dB = 0
points. In particular, we consider effects of Gaussian temporal
magnetic-field fluctuations along the x and z directions on
decoherence. We label these X noise and Z noise, respectively.
These may be relevant to the behavior of isotopically enriched
Si:Bi. We show that for Z noise, which is usually adiabatic, the
df /dB = 0 points offer decoherence-free zones. In analogy
with work done on superconducting qubits,14 we call these
“optimal working points.” The system does not show such
advantages for X noise, however, which leads to temperature-
independent depolarising noise.

In Sec. II, we follow our previous study7 by presenting
a full discussion of the spectral line positions and transition
strengths for coupled nuclear-electronic spin systems for S =
1/2 and arbitrary I . We show that systems with large A and I

display a rich structure of new EPR transitions, many of which
are forbidden at high fields (even as NMR transitions) and
present a set of selection rules to classify four distinct types
of transitions. We discuss the cancellation resonance points
and explain their relation to the maxima and minima of the
transition frequencies. In Sec. III, we introduce the system as
a pair of coupled qubits and compare with Si:P. We propose
here a scheme of universal two-qubit quantum computation in
the intermediate-field regime, exploiting transitions forbidden
at high field to obtain an orders of magnitude speedup relative
to conventional Si:P qubits, which must combine fast EPR
manipulation with much slower NMR. In Sec. IV, we introduce
a model of decoherence caused by a temporal fluctuation of the
external magnetic field and study the effect of the cancellation
resonances on the decoherence rates this model predicts. We
conclude in Sec. V.

II. THEORY OF COUPLED NUCLEAR-ELECTRONIC SPIN
SPECTRA

A. The Hamiltonian

Nuclear-electronic spin systems such as Si:P and Si:Bi are
described by the Hamiltonian:

Ĥ0 = ω0Ŝz − ω0δÎz + AŜ · Î, (1)

where ω0 represents the electron Zeeman frequency given by
Bgβ. Here, B is the strength of the external magnetic field
along the z direction, g is the electron g factor, and β is the Bohr
magneton. δ = ωI/ω0 = 2.488 × 10−4 represents the ratio of

the nuclear to electronic Zeeman frequencies. A is the isotropic
hyperfine interaction strength. The operators Ŝ and Î act on the
electronic and nuclear spins, respectively.

For the systems considered, the electron spin is always
S = 1/2. As a result, the dimension of the Hilbert space
is determined by the particular nuclear spin: for a given
nuclear spin I , there are 2(2I + 1) eigenstates, which can be
superpositions of spin basis states |mS,mI 〉. However, since
[Ĥ0,Ŝz + Îz] = 0, the Hamiltonian in Eq. (1) decouples to
a direct sum of one and two-dimensional sub-Hamiltonians
H 1d

m and H 2d
m with constant m = mS + mI . The former act on

the basis states |mS = ± 1
2 ,mI = ±(I + 1

2 )〉, while the latter
act on the basis states |mS = ± 1

2 ,mI = m ∓ 1
2 〉 such that

|m| < I + 1
2 . The two-dimensional sub-Hamiltonians can be

expanded in the Pauli basis. In particular, the external field part
of the sub-Hamiltonian operator is given by

ω0Ŝz − ω0δÎz = ω0

2
[(1 + δ)σz − 2mδ1]. (2)

The z component of the hyperfine coupling,

AŜz ⊗ Îz = A

2
(mσz − 1/2), (3)

is seen to have an isotropic component as well as a nonisotropic
component dependent on σz, while the x and y components are
given by

A(Ŝx ⊗ Îx + Ŝy ⊗ Îy) = A

2

[
I (I + 1) + 1

4
− m2

]1/2

σx. (4)

Summing the above terms gives each H 2d
m , whereas only

Eqs. (2) and (3) contribute to H 1d
m :

H 2d
m = A

2
(�mσz + �mσx − εm1) ,

H 1d

m=±(I+ 1
2 )

= A

2
(±�m − εm),

�m = m + ω̃0(1 + δ), (5)

�m =
[
I (I + 1) + 1

4
− m2

]1/2

,

εm = 1

2
(1 + 4ω̃0mδ).

ω̃0 = ω0/A is the rescaled Zeeman frequency. We define a
parameter R2

m = �2
m + �2

m, where Rm represents the vector
sum magnitude of spin x and z components in the Hamiltonian.
We denote θm as the inclination of Rm to the z axis, such that
cos θm = �m/Rm and sin θm = �m/Rm. Then, H 2d

m can also
be written as

H 2d
m = A

2
(Rm cos θmσz + Rm sin θmσx − εm1). (6)

The range of values that θm can take are given by

θm ∈

⎧⎪⎨
⎪⎩

[
0, arctan

(
�m

|m|
)]

when m > 0,[
0, π

2

]
when m = 0,[

0, π
2 + arctan

(
�m

|m|
)]

when m < 0,

(7)

where the minimal value occurs as B → ∞ and the maximal
value occurs at B = 0. Note that θm < π ∀ B.
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Straightforward diagonalization of H 2d
m then gives the

eigenstates at arbitrary magnetic fields:

|±,m〉 = a±
m

∣∣± 1
2 ,m ∓ 1

2

〉 + b±
m

∣∣∓ 1
2 ,m ± 1

2

〉
, (8)

where

a±
m = cos

(
θm

2

)
, b±

m = ± sin

(
θm

2

)
, (9)

and with the corresponding eigenenergies

E±
m = A

2

[
−1

2
(1 + 4ω̃0mδ) ± Rm

]
. (10)

The high-field regime corresponds to Bgβ 
 A. In this
regime, θm → 0, hence a±

m → 1 and b±
m → 0; the eigenstates

in Eq. (8) tend to the unmixed |mS,mI 〉 basis states. The
intermediate-field regime corresponds to Bgβ ∼ A and strong
mixing |a±

m | ∼ |b±
m|. H 1d

m has θm = 0 ∀ m, and hence gives the
uncoupled eigenstates |± 1

2 , ± (I + 1
2 )〉 at all magnetic fields.

These have the simplified eigenenergies:

Em=±(I+1/2) = ±ω0

2
(1 − 2δI ) + AI

2
. (11)

It is important to stress that the σz,σx above are quite
unrelated to the Ŝz,Ŝx electronic spin operators. They are
simply a method of representing the two-dimensional sub-
Hamiltonians.

In Fig. 1, the exact expressions in Eqs. (10) and (11) were
used to reproduce the spin spectra investigated for Si:Bi in
for example, Refs. 4 and 6. These equations can be used to
describe any arbitrary coupled nuclear-electronic spin system
obeying Hamiltonian (1), such as other donor systems in Si
including P and As. However, throughout this paper, we only
present numerical solutions for Si:Bi. As discussed here, its
anomalously high value of A and I endows it with unique
possibilities for spin-based quantum computing.

B. Selection rules and transition strengths

The strength of EPR transitions between two spin eigen-
states may be characterised by a transition matrix element
of typical form |〈φi |Ŝx |φf 〉|, where the |φi,f 〉 are a pair
of initial and final eigenstates involved in the transition.
At high fields, |φi〉 ≡ |mSmI 〉 and the textbook selection
rules �mS = ±1,�mI = 0 determine which transitions are
EPR allowed and have nonzero transition intensity. In turn,
NMR transitions have transition matrix element δ|〈φi |Îx |φf 〉|
corresponding, at high fields, to the selection rule �mI =
±1,�mS = 0 for NMR-allowed transitions. The δ denotes the
much weaker coupling between the nuclear magnetic dipole
and the external driving field relative to the electronic spin
transitions typically observed in EPR spectroscopy. Since
δ ∼ 10−4, this means that for typical, nanosecond-duration
EPR driving pulses, one may safely neglect the contribution
of the much smaller Îx matrix element, when calculating spin
qubit rotations.

However, in the intermediate field regimes, where Bgβ ∼
A, the eigenstates are strongly mixed. Then, transitions with
nonzero |〈φi |Ŝx |φf 〉| cannot be identified by the familiar NMR
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FIG. 1. (Color online) The 20 spin energy levels of Si:Bi may
be labeled in order of increasing energy |1〉,|2〉, . . . ,|20〉. States |10〉
and |20〉 are not mixed. State |10〉 is of especial significance since
it, rather than the ground state, is a favorable state to initialize the
system in. Experimental hyperpolarization studies6 concentrate the
system in this state. Thus, in our coupled two-qubit scheme, state
|10〉 corresponds to our |0e0n〉 state; in the same scheme, states |9〉 ≡
|0e1n〉 and |11〉 ≡ |1e0n〉 are related to state |10〉 by a single qubit
flip, while for |12〉 ≡ |1e1n〉, both qubits are flipped.

or EPR selection rules. Nevertheless, using the eigenstates in
Eq. (8), we are able to identify four types of transitions that
can be observed at intermediate fields: |±,m〉 ↔ |±,m − 1〉
and |±,m〉 ↔ |∓,m − 1〉. For a fixed m, the first two have
transition frequencies ω that differ only by 2δω0, and similarly
for the latter two.

Transitions |+,m〉 ↔ |−,m − 1〉 are EPR allowed for all
magnetic fields, and their line intensities are proportional to

I+↔−
m↔m−1 ∝ |a+

m |2|a−
m−1|2 = cos2

(
θm

2

)
cos2

(
θm−1

2

)
. (12)

In the intermediate-field regime, |+,m〉 ↔ |+,m − 1〉 tran-
sitions (of intensity I+

m↔m−1) and |−,m〉 ↔ |−,m − 1〉 tran-
sitions (of intensity I−

m↔m−1), which are EPR forbidden but
NMR allowed, at high field, now become EPR allowed with
relative intensities

I+
m↔m−1 ∝ |a+

m |2|b+
m−1|2 = cos2

(
θm

2

)
sin2

(
θm−1

2

)
(13)

and

I−
m↔m−1 ∝ |a−

m−1|2|b−
m|2 = cos2

(
θm−1

2

)
sin2

(
θm

2

)
. (14)

One can see from Eq. (8) that as ω0 → ∞, the EPR intensities
for these transitions goes as I±

m↔m−1 ∼ 1
ω2

0
→ 0 since |b−

m|2 ∝
1
ω2

0
at high fields.
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However, the last transition type, namely, |−,m〉 ↔
|+,m − 1〉, is most interesting in that it is completely forbidden
at high fields (it corresponds to neither an EPR-allowed nor
an NMR-allowed transition at high B) but nevertheless can
correspond to significant transition strengths at intermediate-
field regime. These are given by

I−↔+
m↔m−1 ∝ |b−

m|2|b+
m−1|2 = sin2

(
θm

2

)
sin2

(
θm−1

2

)
. (15)

Clearly, such transitions never occur when the uncoupled
eigenstates |±, ± (I + 1

2 )〉 are involved as these eigenstates
never exhibit mixing and always obey standard EPR or NMR
selection rules.

C. Cancellation resonances

As shown above, the constant m states of Eq. (8) are eigen-
states of the Hamiltonian H 2d

m = A
2 (�mσz + �mσx) [given by

Eq. (5) excluding a trivial shift], where �m � m + ω̃0. For the
Si:Bi spectra of Fig. 1, this encompasses nine pairs of states
(i.e., all except the uncoupled states |10〉 and |20〉, which
are governed by the H 1d

m ). We use the term “cancellation
resonance” as a blanket term for magnetic field regimes
that simplify the system Hamiltonian. There are two types
of cancelation resonance: type I, �m=0, taking place when
ω̃0 � −m, and type II, �m = �m, taking place when ω̃0 �
−m + �m.

In the Si:Bi system with I = 9/2, the type I cancel-
lation resonance corresponds to m = 0,−1,−2,−3,−4,−5
and a set of equally spaced magnetic field values
B = 0,0.05, . . . ,0.21,0.26 T. For −4 � m � 0, the term in
H 2d

m that depends on σz vanishes entirely at the cancellation
resonance. These are associated with Landau-Zener crossings.
The point at which m + ω̃0 � 0 for m = −(I + 1

2 ) also has
special interest (see below) although it is not a Landau-Zener
crossing. Here, �m = 0 too. For Si:Bi, it corresponds to
m = −5 and B = 0.26 T.

The type II cancellation resonance is particularly interesting
for the m = −3,−4 subspaces, where at ω̃0 � 7, we have
H 2d

m=−3,−4 ∝ (σx + σz) (ignoring the trivial term proportional
to the identity). Although the term cancellation resonance is
simply a convenient label, the type I variant is somewhat
reminiscent of the ESEEM phenomenon of exact cancellation;
here too, the σz components of the Hamiltonian vanishes,
leading to insensitivity to ensemble averaging. Thus we briefly
discuss the parallels below.

D. Analogy with “exact cancellation”

Exact cancellation is a widely used “trick” in ESEEM
spectroscopy. A coupled nuclear-electronic system with
anisotropic hyperfine coupling, which is weak compared with
electron spin frequencies (on the MHz scale rather than GHz
scale), has a rotating frame Hamiltonian:13

Ĥ0 = �sŜz + ωI Îz + A1Ŝz ⊗ Îz + A2Ŝz ⊗ Îx . (16)

Here, �s = ω0 − ω is the detuning from the external driving
field and ωI = δω0 is the nuclear Zeeman frequency. A1 and

A2 are secular and pseudosecular hyperfine couplings as given
in standard texts.13 At resonance, �s = 0. As the hyperfine
terms are weak, terms like Ŝx ⊗ Îx + Ŝy ⊗ Îy are averaged out
by the rapidly oscillating (microwave) driving. The remaining
Hamiltonian ωI Îz + A1Ŝz ⊗ Îz + A2Ŝz ⊗ Îx conserves mS .
For a spin S = 1/2, I = 1/2 system like Si:P, the Hamiltonian
decouples into two separate 2 × 2 Hamiltonians ĤmS=± 1

2
. In

the mS = +1/2 subspace,

ĤmS=+ 1
2

= 1

2

(
ωI + A1

2

)
σz + A2

2
σx, (17)

where the Pauli matrices are defined relative to the basis
|mS〉 ⊗ |mI 〉 = |+ 1

2 〉 ⊗ |± 1
2 〉, while in the mS = −1/2 sub-

space,

ĤmS=− 1
2

= 1

2

(
ωI − A1

2

)
σz − A2

2
σx, (18)

where the Pauli matrices are defined relative to the basis
|mS〉 ⊗ |mI 〉 = |− 1

2 〉 ⊗ |± 1
2 〉. It is easy to see from Eq. (18)

that if ωI = A1/2, only the A2σx/2 term remains. This
is the “exact cancellation” condition. While reminiscent of
hyperfine cancellations resonances, there are key differences.
In particular, since the type I cancellation resonances of
Eq. (5) affect both nuclear and electron spins, at m � −ω̃0,
the eigenstates assume a “Bell-like” form:

|�±〉 = 1√
2

(∣∣∣∣−1

2

〉
e

⊗
∣∣∣∣m + 1

2

〉
n

±
∣∣∣∣+1

2

〉
e

⊗
∣∣∣∣m − 1

2

〉
n

)
,

(19)

where the e and n subscripts have been added for clarity,
to indicate the electronic and nuclear states, respectively. In
contrast, for exact cancellation, they give superpositions of
nuclear spin states only:

|�〉 = 1√
2

∣∣∣∣−1

2

〉
e

⊗
(∣∣∣∣+1

2

〉
n

±
∣∣∣∣−1

2

〉
n

)
, (20)

which still permits interesting manipulations of the nuclear
spin states.15

Note that, while exact cancellation eliminates the full Ising
term A1Ŝz ⊗ Îz, the EPR cancellation resonance eliminates
only the nonisotropic part. Furthermore, as discussed above,
cancellation resonances also have a type II variant. The ω̃0 = 7
resonance does not cancel the hyperfine coupling at all; it
equalizes the Bloch vector of the states in adjacent m subspaces
producing another effect.

EPR cancellation resonances are in practice a much stronger
effect than exact cancellation: decohering and perturbing
effects of interest in quantum information predominantly affect
the electronic spins, not the nuclear spins. Exact cancellation
appears in the rotating frame Hamiltonian (which contains
only terms of order MHz). It will not survive perturbations ap-
proaching the GHz energy scale. The cancellation resonances,
on the other hand, arise in the full Hamiltonian, eliminate large
electronic terms, and can potentially thus reduce the system’s
sensitivity to major sources of broadening and decoherence.

It is valuable to recall a major reason why the “exact
cancellation” regime is so widely exploited in spectroscopic
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studies. In systems with anisotropic coupling, the spectra
depend on the relative orientation of the coupling tensor
and external field. Thus for powder spectra, which neces-
sarily average over many orientations, very broad spectral
features result. At exact cancellation, the simplification of the
Hamiltonian is dramatically signalled by ultra-narrow spectral
lines.13 Similarly, in Ref. 7, insensitivity to perturbation
by a spin ensemble, in the form of ultranarrow spectral
lines, was demonstrated in the cancellation resonance regime.
This motivates further investigation of the potential of the
cancellation resonance points for reducing decoherence.

E. The frequency minima and maxima

In Fig. 2, we show Si:Bi spectra in the intermediate field
regime, using the expressions for frequencies and transition
strengths presented above. In Fig. 2(a), we show a comparison
with experimental spectra, showing good agreement with line
intensities and positions. A striking feature of Fig. 2(b) is a
set of spectral minima and maxima of the transition frequency
of several lines. These are close, but not coincident with the
cancellation resonance points (indicated by arrows and labeled
−m = 0,1, . . .); for instance, while the −m = 4 cancellation
resonance corresponds to an avoided crossing between states
|11〉 and |9〉, and the −m = 3 point corresponds to an avoided
crossing between states |12〉 and |8〉, the nearby frequency
minimum involves the transitions |12〉 ↔ |9〉 and |11〉 ↔ |8〉.
In other words, it involves two states from adjacent avoided
crossings. This rich EPR structure is entirely absent in (say)
conventional Si:P spin systems (with I = 1/2 and low A),
which do not have these multiple avoided crossings, at quite
high magnetic fields. It is nonetheless possible to fully analyze
this structure for Si:Bi without resorting to numerics.

We can show that transitions of type |±,m〉 ↔ |∓,m − 1〉
have a unique B value for which df /dB = 0 when

cos(θm) � − cos(θm−1) (21)

if −I + 3
2 � m � 0. Such a condition can only be satisfied

if θm ∼ θm−1 ∼ π/2, meaning that both states must be near
a Landau-Zener-type cancellation resonance. The value of B

that satisfies this is

B � − A

gβ

(m − 1)�m + m�m−1

�m−1 + �m

. (22)

Further study of these df /dB = 0 points shows that they
are frequency minima, and they can be observed in Fig. 2(b)
near the cancellation resonance points marked “0, 1, 2, 3,
4.” An equivalent way of viewing the frequency minimum
condition cos θm � − cos θm−1 is to write

θm � π

2
− φ,

(23)
θm−1 � π

2
+ φ,

so the frequency minima occur when both subspaces involved
are an equal “angular distance” away from their cancellation
resonance points.

Transitions |±,m〉 ↔ |±,m − 1〉 also have a df /dB = 0
point when

cos θm � cos θm−1 (24)

FIG. 2. (Color online) (a) Comparison between theory [see
Eqs. (10), (11), and (12)] (black dots) and experimental CW EPR
signal (grey/red online) at 9.7 GHz. Resonances without black dots
above them are not due to Si:Bi; the large sharp resonance at 0.35 T is
due to silicon dangling bonds, while the remainder are due to defects
in the sapphire ring used as a dielectric microwave resonator. The
variation in relative intensities is mainly due to the mixing of states as
in Eq. (8). The variability is not too high but the calculated intensities
are consistent with experiment and there is excellent agreement for the
line positions. (b) Calculated EPR spectra (convolved with a 0.42 mT
measured linewidth); they are seen to line up with the experimental
spectra at f = ω/2π = 9.7 GHz). The type I cancellation resonances
are indicated by integers −m = 0,1,2,3,4,5. The first four of these are
associated with df/dB = 0 points. The type II cancelation resonance
at ω̃0 � 7 also coincides with a df/dB = 0 point, and corresponds
to that shown in the �2 GHz electron nuclear double resonance
(ENDOR) spectra of Ref. 5. Figure reproduced with permission from
Ref. 7.

if −I + 3
2 � m � 0. These df /dB = 0 points are frequency

maxima and are given at fields

B � A

gβ

(m − 1)�m − m�m−1

�m−1 − �m

. (25)

Because 0 � θm < π , the frequency maximum condition
Eq. (24) implies that θm � θm−1. In the case of Si:Bi, only
the maximum for the transitions |±,−3〉 ↔ |±,−4〉 occurring
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FIG. 3. (Color online) Shows that near the ω̃0 = 7 frequency
maximum, the transition rates |12〉 ↔ |11〉 and |8〉 ↔ |9〉 equalize,
and we may transfer the coherences between the former to the latter
with a relative phase shift of π . We use ω1/2π = 200 MHz.

at ω̃0 � 7 and B � 0.37 T can be observed by EPR [this
is shown in the region of Fig. 2(b) labeled “7”]. The other
maxima occur at fields B > 0.5 T for which the EPR line
intensities become vanishingly small. The ω̃0 � 7 frequency
maximum is especially interesting because at this value both
the m = −3,−4 subspaces are at their type II cancellation
resonance. Here, θ−3 � θ−4 � π/4, which implies that H 2d

−3 ∝
H 2d

−4 ∝ (σx + σz). Such a symmetrization of the Hamiltonian
offers possibilities for more complex manipulations. It has
been suggested4,5 that the larger state space of Si:Bi may be
used to store more information. Thus we can show that at
ω̃0 � 7, a single EPR (∼80 ns) pulse can map any coherences
between the m = −4 states into the same coherences between
the m = −3 states. The condition of Eq. (24) implies that the
amplitudes a±

−3 � a±
−4 and b±

−3 � ±b±
−4. This means that an

EPR pulse will effect the rotations |12〉 ↔ |11〉 and |9〉 ↔ |8〉
at the same rate. For instance, if the initial two-qubit state is
|�〉 = c11|12〉 + c9|8〉, a π pulse will yield |�〉 = c11|11〉 −
c9|9〉 and thus produces a mechanism for temporarily storing
the two-qubit state (within a relative π phase shift). This is
illustrated in Fig. 3.

The m = −5 state of Si:Bi, state |10〉, is not associated with
a Landau-Zener crossing at any field as the Hamiltonian leaves
it uncoupled to any other basis state. Nevertheless, the fields
for which ω̃0 = 5(1 + δ) (at B ≈ 0.26 T for Si:Bi) represent
the most drastic case of type I cancellation resonance: the �−5

term in H 1d
−5 vanishes, leaving only the ε−5 term. Here, E−5 �

−A/4, so its energy lies almost exactly half-way between
the |±,−4〉 state energies: states |9〉 and |11〉 of Si:Bi have
energies E± � E−5 ± R−4. This gives the striking feature at
2.3 GHz in Fig. 2(b) where the |10〉 ↔ |9〉 and |11〉 ↔ |10〉
lines coincide and where an EPR pulse would simultaneously
generate coherences between state |10〉 and both states |11〉 and
|9〉. In fact, one may use two-photon second-order processes
to transfer population between states |9〉 and |11〉 (recall that
simultaneous spin flips are forbidden for isotropic hyperfine
coupling). Figure 4 illustrates this.

0 10 20 30 40 50 60
0

0.5

1

1.5

2

F
id

el
it
y

 

 
0 5 10 15 20 25 30

0

0.5

1

1.5

2

 

 

ψ|0e0n
2

ψ| 1√
2
(|1e0n |0e1n )|2

ψ|0e1n
2

ψ| 1√
2
(i|0e0n + |1e0n )|2

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

Time, t (ns)

 

 

ψ|1e0n
2

ψ| 1√
2
(−i|0e0n + |0e1n )|2

(c)

(b)

(a)

FIG. 4. (Color online) Shows that at the ω̃0 = 5 resonance,
second-order two-photon transitions may be exploited since f 10↔9 �
f 11↔10. A linear oscillating microwave field of strength ω1/2π =
200 MHz is used. (a) shows that driving at resonance prepares
|10〉 → 1√

2
(|11〉 − |9〉). The process is very sensitive to detuning

from resonance. (b) and (c) illustrate how slight detuning of the
microwave frequency may be used to prepare other superpositions
such as |9〉 → 1√

2
(i|10〉 + |11〉) and |11〉 → 1√

2
(−i|10〉 + |9〉).

III. SI:BI AS A TWO-QUBIT SYSTEM

A. Basis states

The adiabatic eigenstates of the well studied four-state S =
1/2, I = 1/2 Si:P system can be mapped onto a two-qubit
computational basis, as shown in Table I.

With a 20-dimensional state space, the Si:Bi spectrum
is considerably more complex. However, we can identify a
natural subset of four states (states |9〉,|10〉,|11〉, and |12〉),
which represents an effective coupled two-qubit analog, as
shown in Table II. As hyperpolarization initializes the spins
in state |10〉 (see Ref. 6) and this state has both the electron
and nuclear spins fully antialigned with the magnetic field,

TABLE I. Two-qubit computational basis states of Si:P.

Adiabatic state High-field state Logical qubit

|4〉 |+ 1
2 ,+ 1

2 〉 |1e1n〉
|3〉 |+ 1

2 ,− 1
2 〉 |1e0n〉

|1〉 |− 1
2 ,+ 1

2 〉 |0e1n〉
|2〉 |− 1

2 ,− 1
2 〉 |0e0n〉
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TABLE II. Two-qubit computational subspace of Si:Bi.

Adiabatic state High-field state Logical qubit

|12〉 |+ 1
2 ,−3 1

2 〉 |1e1n〉
|11〉 |+ 1

2 ,−4 1
2 〉 |1e0n〉

|9〉 |− 1
2 ,−3 1

2 〉 |0e1n〉
|10〉 |− 1

2 ,−4 1
2 〉 |0e0n〉

although it is not the ground state, it can be identified with
the |0e0n〉 state. The other states—just as in the Si:P case—are
related to it by adding a single quantum of spin to one or both
qubits.

For both systems, there are, in principle, four transitions that
would account for all possible individual qubit operations, as
listed in Table III. We show below that for Si:Bi, all qubit
operations are EPR allowed for B ∼ 0.1–0.6 T. For Si:P,
this region permits EPR manipulation of only the electronic
qubit flips (the first two); nuclear rotations require much
slower microsecond NMR transitions. Measurement of the
qubits in the computational basis has to be performed at high
fields, where the adiabatic logical qubit coincides with the
electron and nuclear spin states. All simultaneous nuclear and
electronic qubit flips are forbidden for systems with isotropic
hyperfine coupling A, including both Si:P and Si:Bi. We note
that, in spin-systems with “exact cancellation” and anisotropic
A, the AÎx ⊗ Ŝz coupling does permit simultaneous nuclear-
electronic qubit flips. These were recently shown for the
organic molecule malonic acid;15 the disadvantage here is
that single nuclear qubit rotations (essential for quantum
computation) are not EPR allowed.

B. Universal set of quantum gates

It is known that for universal quantum computation it
suffices to be able to perform arbitrary single-qubit rotations
and a two-qubit gate such as the controlled-not (CNOT) gate.16

We now show how we may exploit the strong hyperfine
interaction of the Si:Bi system to achieve this using only
fast EPR pulses, eliminating the need for the much slower
(longer-duration) NMR pulses.

TABLE III. Conditional single-qubit rotations of angle θ about
vector v in the Bloch sphere, denoted R̂v(θ ), and corresponding
transition frequencies. Frequencies in boldface correspond to qubit
operations, which are EPR allowed at B = 0.1–0.6 T, i.e., they require
only fast (nanosecond) EPR pulses. All four EPR operations are
possible for Si:Bi, whereas for Si:P, nuclear qubit operations require
slow (microsecond) NMR pulses. This scheme allows for cheap,
controlled qubit operations, whereas single-qubit operations would
require twice the number of pulses.

Controlled operation Si:P transitions Si:Bi transitions

R̂v(θ )e ⊗ |0〉〈0|n ω3↔2 ω11↔10

R̂v(θ )e ⊗ |1〉〈1|n ω4↔1 ω12↔9

|0〉〈0|e ⊗ R̂v(θ )n ω2↔1 ω10↔9

|1〉〈1|e ⊗ R̂v(θ )n ω4↔3 ω12↔11

Control of the electron spins is facilitated by the Hamilto-
nian Ĥ = Ĥ0 + Vx/y(t) where Vx/y(t) = ω1 cos(ωt)Ŝx/y rep-
resents the external magnetic field oscillating along the x or y

axis. This may be written as

Vx/y(t) = ω1

2
[cos(ωt)Ŝx/y + sin(ωt)Ŝy/x]

+ ω1

2
[cos(ωt)Ŝx/y − sin(ωt)Ŝy/x]. (26)

We label the first component the right-handed (RH) and the
second term the left-handed (LH) rotating fields. In the rotating
frame between two eigenstates |e〉 and |g〉, which satisfy
the selection rule |〈e|Ŝx/y |g〉| = |η| > 0, the Liouville-von
Neumann equation for the reduced two-level system is

dρ̃(t)

dt
= i

ω1η

4
[ρ̃(t),σ̂x/y] (27)

if ω1 � ωe↔g , where ωe↔g is the transition frequency between
the two eigenstates. For the transitions where the increase in
energy corresponds to an increase(decrease) in total z-axis
magnetization, m, the resonance condition is satisfied by the
RH (LH) component of the oscillating magnetic field. This
feature, which is explained in more detail in Appendix A,
may be exploited for qubit manipulation involving certain
transitions that are near degenerate, as will be explained in
the following section. The EPR pulses at our disposal allow
us to perform controlled single-qubit unitaries Rv(θ ) where v

lies in the x-y plane. Two orthogonal Paulis suffice to generate
arbitrary single-qubit unitaries17 using at most three pulses,
and we may construct the controlled σ̂z and Hadamard gates
by these pulse sequences:

σ̂z = ei 3π
2 ei π

2 σ̂y ei π
2 σ̂x ,

(28)

H : = 1√
2

(σ̂x + σ̂z) = ei 3π
2 ei π

2 σ̂x ei 3π
4 σ̂y eiπσ̂x .

The possible controlled operations are shown in Table III.
Single-qubit gates would require us to repeat the set of
controlled EPR pulses for both the controlling qubit basis states
and, as such, would require twice the time.

The transition strengths given in Eqs. (12), (13), (14), and
(15) are given by |η|2. Equation (27) shows that the qubit
rotation speed, given a fixed microwave field strength, is
determined by the mixing factor η. As B → ∞, η → 1 for
high-field EPR transitions, and η → 0 for high-field NMR
transitions as well as the high-field dipole-forbidden transition.
At magnetic fields where A ∼ Bgβ, however, mixing occurs
and η will become appreciable.

At the m = −4 cancellation resonance, corresponding to
field values ω̃0 � 4 (B � 0.21 T), the values of |η| for both
nuclear and electronic qubit operations equalize: this is simple
to verify from Eqs. (12)–(14) by setting θ−5 = 0 and θ−4 =
π/2. We show numerically in Figs. 5(a)–5(b) that this means
that a π pulse on the nuclear qubit in effect becomes as short
as on the electronic one.

C. Selective qubit gates for near-degenerate transitions

An important advantage of using the Si:Bi at interme-
diate fields is the prospect of quantum computing using
exclusively fast, nanosecond EPR pulses. Nevertheless, such
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(a) Ω11↔10

B = 0.21 T

(b) Ω10↔9

B = 0.21 T

(c) (Ω12↔11 + Ω9↔8)/2 , linearly polarised
B = 0.22 T

(d) Ω12↔11 , circularly polarised
B = 0.22 T

FIG. 5. (Color online) (a) and (b) show Rabi oscillations utilizing a linearly oscillating microwave field of strength ω1/2π = 200 MHz. At
B = 0.21 T, the time taken for the electron qubit flip |0e0n〉 → |1e0n〉 is identical to that for the nuclear qubit flip |0e0n〉 → |0e1n〉. (c) and (d)
show selective nuclear qubit flips and have microwave fields of strength ω1/2π = 100 MHz. This is because the energy difference between
the eigenstates is smaller than in the previous two cases and ω1 must remain perturbative. (c) Utilizes a linearly oscillating microwave field,
which is nonselective for short pulses. At B = 0.22 T, the rotation speed ratio is |η12→11|/|η9→8| = 5/4. A 5π rotation of the nuclear qubit
corresponds to a 4π rotation of the unwanted |9〉 → |8〉 transition. In (d), we use a RH circularly polarized microwave field, which selects for
the desired conditional nuclear qubit rotation and is much more efficient than the linearly polarized case.

short pulses necessarily imply a larger frequency bandwidth.
While this is not, in general, a problem, it may present
difficulties for certain pairs of transitions that are quite close
in frequency (tens of MHz rather than GHz): the EPR pulse
may drive unwanted spin flips. One solution is to simply
lengthen the duration of the pulse; however, one then loses
much of the speedup advantage as timescales comparable
to NMR are then required. We show here that it remains
possible to perform selective one-qubit gates with fast EPR
pulses.

For example, consider the initial state |ψ〉 =
1√
2

(|1e1n〉 + |0e1n〉). If we wanted to perform a CNOT
gate on this state, with the electron qubit as the control,
we might choose to use the transition frequency ω12↔11 as
dictated by Table III. However, this frequency is only a few
MHz different from that of ω9↔8, and a short pulse of ∼50 ns

would also drive the transition between states |9〉 and |8〉, and
thereby effect a unwanted operation on our qubits. There are
two strategies to overcome this complication: (1) by tuning the
microwave frequency to be exactly between the wanted and
unwanted transition frequencies and assuming a square pulse,
we ensure they are both affected by the same pulse power ω′

1 =
ω1sinc(T δω0), where T is the pulse duration, such that the only
variable affecting the two transition rates would be the mixing
factor η. Near the m = −4 cancellation resonance at B = 0.22
T, we get |η12→11|/|η9→8| = 5/4. This ensures that at time
t = 10π/(ω′

1|η12→11|), we have performed the operation

1√
2

(|1e1n〉 + |0e1n〉) → 1√
2

(−i|1e0n〉 + |0e1n〉). (29)

This is shown numerically in Fig. 5(c).
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(2) The transition |12〉 → |11〉 utilizes the RH component
of the microwave field, whereas the |9〉 → |8〉 transition
uses the LH one. By generating a RH circularly polarized
microwave field, we would be able to select for the desired
transition, as shown in Fig. 5(d).

Obviously, scheme 2 is preferable as it requires much
shorter times to carry out our quantum gates. This scheme
can be used in selecting for one of the transitions |±,m〉 ↔
|∓,m − 1〉, which differ in frequency by 2δω0, and, similarly,
for transitions |±,m〉 ↔ |±,m − 1〉.

D. Scaling with controllable Heisenberg interaction

So far, we have only described how to perform two-qubit
gates in a single site of Si:Bi (or any other nuclear-electronic
system obeying the same Hamiltonian and with a large enough
hyperfine exchange term). This is very limited, however, and
we need to be able to scale the system so as to incorporate
arbitrarily large numbers of qubits. With Si:Bi, the possibility
does exist to further utilize the 20-dimensional Hilbert space,
which would provide a maximum of four qubits. This is,
however, not scalable, and we will still be limited to just
four qubits as we cannot create more energy levels within
the single-site Si:Bi system. The only feasible option that
remains is to have spatially separated Si:Bi centers between
which we can establish an interaction. The original Kane
proposal1 envisaged a Heisenberg interaction between nearest-
neighbor electrons, which could be controlled via changing the
electrostatic potential barrier between the donor sites, that, in
turn, alters the degree of electron wave function overlap. This
interaction has the effective form:

Ĥint = J Ŝi · Ŝi+1. (30)

The same interaction could be achieved indirectly by modu-
lating the Rydberg state of a control dopant placed in between
the two qubits.18 As shown by Ref. 19, such an interaction can
be used to produce a

√
SWAP gate:

√
SWAP = ei π

8 e−i
Ĥint
J

π
2 . (31)

Using two such gates, together with single-qubit unitaries, we
can establish a CZ gate between the electrons:

CZ12 = ei π
2
(
e−iσ̂ 1

z
π
4 ⊗ eiσ̂ 2

z
π
4
)√

SWAPe−iσ̂ 1
z

π
2

√
SWAP. (32)

As stated in previous sections, we cannot perform rotations
about the z axis of the Bloch sphere directly, but we can use
our EPR pulses about the x and y axes to produce the required
single-qubit unitaries:

e−iσ̂ 1
z

π
4 = eiπe−iσ̂ 1

y
3π
4 e−iσ̂ 1

x
π
4 e−iσ̂ 1

y
π
4 . (33)

The CZ gate can be turned into a CNOT gate by simply
applying a Hadamard on the target qubit before and after the
application of the CZ. Such an interaction affects the electron
spin basis states, and not the adiabatic basis states to which we
have designated our logical qubits. Therefore we must apply
our electronic two-qubit gates in the high-field limit where
mixing is suppressed and where there is a high fidelity between
the adiabatic basis and spin basis. A consequence of this is
that the energy difference between different eigenstates will
be very large and, as is well known,20 if |Ei − Ei+1| 
 J , the

Heisenberg interaction between the two effectively becomes
an Ising interaction J Ŝ1

z ⊗ Ŝ2
z . To use the above scheme

of producing entangling two-qubit gates between all four
eigenstates in each of the two adjacent sites, we would have to
establish a very strong J .

Alternatively, we can set Bi and Bi+1 to be sufficiently
different, and J small enough, such that we only get an Ising
interaction between all relevant eigenstates. It is in fact easier
to produce the CZ and CNOT gates with an Ising interaction,
as it only requires one exchange operation and not two as in
the case of the Heisenberg interaction:21,22

CZ12 = e−i π
4
(
eiσ̂ 1

z
π
4 ⊗ eiσ̂ 2

z
π
4
)
e−iŜ1

z ⊗Ŝ2
z π . (34)

IV. DECOHERENCE FROM TEMPORAL MAGNETIC
FIELD FLUCTUATIONS

For practical quantum information processing in silicon,
the substance would need to be purified so as not to contain
any 29Si such that no decoherence would result due to
spin-bath dynamics. Temperatures would also be maintained
at low levels in order to minimize the phonon-bath-induced
decoherence. Here, we wish to employ a phenomenological
model of decoherence for nuclear-electronic systems, resulting
only from stochastic magnetic-field fluctuations. Taking the
Hamiltonian from Eq. (1) and adding to it a perturbative term
involving independent temporal magnetic-field fluctuations in
all three spatial dimensions (with the usual association of
1 = x,2 = y,3 = z), all of which take a Gaussian distribution
with mean 0 and variance α2

n, gives in the interaction picture:

H̃ (t) =
3∑

n=1

ωn(t)S̃n(t) + ωn(t)δĨn(t), (35)

where {Sn} and {In} are the n-axis electron and nuclear spin
operators, respectively, and ωn(t) is the electron Zeeman
frequency at time t . As before, δ represents the ratio of
the nuclear to electronic Zeeman frequencies and because it
is small, we may ignore the nuclear term. We then follow
the standard procedure of deriving a Born-Markov master
equation:23

d

dt
〈ρ(t)〉 = i[〈ρ(t)〉,Ĥ0]

+α2
n

3∑
n=1

∑
�

e−χn�
2

{
Ŝ†

n(�)〈ρ(t)〉Ŝn(�)

− 1

2
[〈ρ(t)〉,Ŝ†

n(�)Ŝn(�)]+

}
, (36)

where Ŝn(�) are the electron spin operators in the eigenbasis of
Ĥ0, � is the energy difference between two such eigenstates,
and χn = (dBn/dt)−1 is the inverse of the rate of change of
the magnetic field strength in direction n. 〈ρ(t)〉 is defined
as the density operator of the coupled nuclear-electronic
system, averaged over either an ensemble of such systems,
or repeated experiments on a single system. Further details for
the derivation of Eq. (36) can be found in Appendix B.
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The rate term e−χn�
2

imposes the results of the adiabatic
theorem into our master equation. The quantitative condition
for adiabatic evolution is often cited as24∣∣∣∣ 〈φi |Ḣ (t)|φj 〉

�i↔j 2

∣∣∣∣ � 1. (37)

For the model described here, this translates to∣∣∣∣∣〈φi |Ŝn|φj 〉
dBn

dt

�i↔j 2

∣∣∣∣∣ = |〈φi |Ŝn|φj 〉| 1

χn�i↔j 2 � 1, (38)

which means that, in the case of
∣∣〈φi |Ŝn|φj 〉

∣∣ > 0, if the
magnetic field is fluctuating sufficiently slowly, the probability
of transition between eigenstates |φi〉 and |φj 〉 becomes
vanishingly small.

Since we have made the rotating wave (or secular) ap-
proximation and are only interested in the interaction picture
dynamics of our system, we may drop the Hamiltonian com-
mutator in Eq. (36), leaving only the dissipator term. For Si:Bi
in the intermediate-field regime, the secular approximation can
be made by setting α2/2π = 9 MHz, and we use this value
whenever we provide numerical calculations. We are now
equipped with the tools to address decoherence in our quantum
system. We may model our gates as ideal unitaries that can
prepare some superposition |ψ〉 = a|e〉 + b|g〉 between the
adiabatic basis states |e〉 and |g〉, which is then decohered
according to our noise model. The dephasing and depolarising
rates are determined by applying our master equation and
measuring the rate that the observables√

tr[σxρ̃(t)]2 + tr[σyρ̃(t)]2 (39)

and

tr[σzρ̃(t)] (40)

decay respectively. In the cases that these decay as e−�t , where
� is the decay rate, we may characterize the dephasing and
depolarising times by T2 and T1, respectively, which are the
inverse of the decay rates. Such times are measured in EPR
experiments.25,26 The Pauli matrices denoted here are in the
eigenbasis of the reduced two-level system in question. We
will study two types of noise: Z and X noises, so named due
to Gaussian magnetic-field fluctuations in the z and x axes,
respectively. Throughout this section, when an adiabatic state
is indicated with m, it is implied that |m| < (I + 1

2 ), and states
where m = ±(I + 1

2 ) are explicitly designated.

A. Z noise

Given Z noise, we may consider our system as a decoupled
four-level system with sub-Hamiltonian

Hsub = H 2d
m ⊕ H 2d

m−1. (41)

This is possible as there will be no transfer of population to
other components of the Hilbert space. We may write Ŝz in the
adiabatic basis {|+,m〉,|−,m〉,|+,m − 1〉,|−,m − 1〉}:⎛
⎜⎜⎜⎝

cos(θm) − sin(θm) 0 0

− sin(θm) − cos(θm) 0 0

0 0 cos(θm−1) − sin(θm−1)

0 0 − sin(θm−1) − cos(θm−1)

⎞
⎟⎟⎟⎠. (42)

Substituting this into Eq. (36) and considering it in the
interaction picture gives

d

dt
〈ρ̃(t)〉=

m∑
n=m−1

α2

4
cos2(θn)

[
σ̂ n

z 〈ρ̃(t)〉σ̂ n
z − 〈ρ̃(t)〉]+α2

4
e−χ�2

× sin2(θn)[|+,n〉〈−,n|〈ρ̃(t)〉|−,n〉〈+,n|
− |+,n〉〈−,n||−,n〉〈+,n|〈ρ̃(t)〉 + H.c.]. (43)

In the high-field limit, our EPR local unitaries can only
create superpositions a|+,m〉 + b|−,m − 1〉. As the noise
operator takes the form σ̂ m

z ⊕ σ̂ m−1
z in this regime, this

superposition may be considered to exist as a decoupled
two-level system. We may therefore solve Eq. (43) (for the
two-level subspace in question) analytically:

eLt ρ̃(t0) = 1
2

(
1 + e

− t
T2

)
ρ̃(t0) + 1

2

(
1 − e

− t
T2

)
σ̂zρ̃(t0)σ̂z, (44)

where L is the Liouville superoperator, whose action on ρ is
given by Eq. (43). This is simply the dephasing channel for a
spin 1/2 particle:17

E(t) ◦ ρ = [1 − λ(t)]ρ + λ(t)σ̂zρσ̂z (45)

with probability λ(t) of performing a σ̂z operation under
conjugation. Here, λ(t) = (1 − e−t/T2 )/2 with a T2 time of

FIG. 6. (Color online) Shows the change in density operator
elements of |ψ〉 = 2√

3
|9〉 + 1√

3
|12〉 after a period of 20/α2, given

diabatic Gaussian noise of variance α2, at two field regimes: the
frequency minimum of B = 0.188 T and B = 6 T. (a) Population
of ρ in the eigenbasis of Ĥ0 at time t0. (b) and (c) show the effect
of B on X noise. (b) Near the frequency minima, X noise couples
every part of the full Hilbert space, and depolarizes the full system,
ultimately resulting in 1

201. (c) At B = 6 T, X noise decouples states
|+,m〉,|−,m − 1〉 from the rest of the Hilbert space, and effects a
depolarizing channel in that subspace only. (d) and (e) show the effect
of B on Z noise. Z noise conserves angular momentum and hence
keeps to the four-dimensional Hilbert space of m = −3,m − 1 = −4.
(d) shows that at the frequency minimum, Z noise effects independent
depolarizing channels for each m subspace. As a result, the population
of states |12〉 and |9〉 equalize with those of states |8〉 and |11〉,
respectively.(e) shows that at B = 6 T, 〈+,m|Ŝz|−,m〉 ∼ 0 and we
simply get a dephasing channel for the |+,m〉,|−,m − 1〉 subspace.
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2/α2. This is illustrated by Fig. 6(e), where only the off-
diagonal elements of ρ(t0), as shown in Fig. 6(a), decay. At
low fields, however, 〈+,m|Ŝz|−,m〉 > 0 and we cannot ignore
the exchange term in Eq. (43). In this case, we may use the
four-dimensional Bloch vector representation of our density
operator:

ρ(t) = 1

4

⎛
⎝ 3∑

i,j=0

nij (t)σ̂i ⊗ σ̂j

⎞
⎠ , n00(t) = 1. (46)

It is possible to map the dynamics of the density operator to
that of the Bloch vector27 as

dn(t)
dt

= Ln(t). (47)

For Si:Bi, the 16 simultaneous differential equations can
be solved to obtain analytic expressions for the dephasing
and depolarising rates. Alternatively, by decomposing n(t)
in the eigenbasis of L, denoted nl with generally complex
eigenvalues λl , we may represent the dynamics of the Bloch
vector as

n(t) =
15∑
l=0

clnle
tλl , (48)

where cl are determined by the initial conditions. It is the
real component of the eigenvalues which leads to decay in
population of the eigenstate. The infinite-time state is therefore
a superposition of eigenstates nl such that Re(λl) = 0.

1. Adiabatic Z noise

Here, we may set χ → ∞ ⇒ e−χ�2 = 0 for �2 > 0. There
will be no depolarization in this case, and we may only

have pure dephasing. For superpositions of type a|±,m〉 +
b|∓,m − 1〉, the dephasing rate, parameterized as the decay of
the off-diagonal elements of the subspace in question, is given
by

1

T2
= α2

8
[cos(θm) + cos(θm−1)]2. (49)

When cos(θm) = − cos(θm−1), which is satisfied at the fre-
quency minima, dephasing due to Ŝz is completely removed.

For superpositions of type a|±,m〉 + b|±,m − 1〉, the
dephasing rate is given by

1

T2
= α2

8
[cos(θm) − cos(θm−1)]2. (50)

Here, there are two regions where the Ŝz-caused dephasing
is removed; when cos(θm) = cos(θm−1), which occurs at
the frequency maxima, and at the high-field limit, where
cos(θm) = cos(θm−1) = 1 ∀ m, rendering such transitions as
only NMR allowed

For superpositions of type a|±, ± (I + 1
2 )〉 + b|±,m〉, the

dephasing rate is given by

1

T2
= α2

2
sin

(
θm

2

)4

, (51)

which reaches its minimal value of 0 as B → ∞, whereas for
superpositions of type a|±, ± (I + 1

2 )〉 + b|∓,m〉 it is given
by

1

T2
= α2

2
cos

(
θm

2

)4

, (52)
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FIG. 7. (Color online) The exponential decay rate given by � in units of α2/2 for diabatic Z noise driven (a) depolarization and
(b) dephasing in Si:Bi. This is done in the four-dimensional subspace of m = −3,m − 1 = −4. (a) shows that in each subspace, the depolarization
rate maximizes when θm = π/2, or at the avoided crossing cancellation resonances. (b) shows that at the high-field limit, the dephasing rate
of a|±,m〉 + b|∓,m − 1〉 is maximal, whilst that of a|±,m〉 + b|±,m − 1〉 becomes vanishingly small. It should be noted, however, that the
a|−,m〉 + b|+,m − 1〉 superposition cannot be made by either EPR or NMR in the high-field limit. These rates both approximately reach the
value of 1/2 at the frequency minima.
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which reaches its minimal value (that is generally greater than
0) at B = 0 T. The steady-state solution for adiabatic Z noise
is given by

n(∞) = 1 ⊗ 1 + c11 ⊗ σ̂z + c2σ̂z ⊗ 1 + c3σ̂z ⊗ σ̂z. (53)

2. Diabatic Z noise

Here, we may set χ → 0 ⇒ e−χ�2 = 1 ∀ �2. Solving the
Bloch vector differential equations yields analytic expressions
for the dephasing rates. For an initial superposition of
a|±,m〉 + b|∓,m − 1〉, this gives

1

T2
= α2

4
[cos(θm) cos(θm−1) + 1] (54)

and for a|±,m〉 + b|±,m − 1〉,
1

T2
= α2

4
[cos(θm) cos(θm−1) − 1]. (55)

Equation (54) reaches a minimum value (hence giving the
longest T2 time) when cos(θm) = − cos(θm−1), i.e., at the
frequency minima. Unlike the adiabatic Z noise case, this
value does not reach 0, but rather reaches approximately half
its maximal value at the high-field regime. Conversely, Eq. (55)
reaches its maximal value when cos(θm) = − cos(θm−1), at-
taining approximately the same value as for Eq. (54) at
this regime. Note that unlike the adiabatic case, there is no
decoherence minimum at the frequency maxima; the decay
rate simply vanishes as B → ∞.

Because the exchange terms in Eq. (43) contribute to the
dynamics for diabatic Z noise, there will also be depolarizing
noise in each m subspace, equalizing the population in states
|±,m〉. Figure 6(d) shows the effect of this depolarization at the
frequency minima. The depolarization rate of each m subspace
is given by

1

T1
= α2

2
sin(θm)2, (56)

which vanishes as B → ∞ and maximizes at the avoided
crossing cancellation resonance. Given any superposition√

Pg|g〉 + eiφ
√

Pe|e〉, with states |g〉 and |e〉 each existing in a
different m subspace, such that tr[Ĥ0(|e〉〈e|−|g〉〈g|)] > 0, the
depolarization is given by

tr[σzρ̃(t)] = 1
2Pe

(
1 + e−t/T e

1
) − 1

2Pg

(
1 + e−t/T

g

1
)
, (57)

where 1/T
g/e

1 is the depolarization rate in the m subspace for
|g〉 and |e〉, respectively. The steady-state solution for diabatic
Z noise given such superpositions is given by

n(∞) = 1 ⊗ 1 + c1σ̂z ⊗ 1, (58)

where c1 ∈ [1,−1]. For superpositions of type a|±, ± (I +
1
2 )〉 + b|±,m〉, the dephasing rate is given by

1

T2
= α2

4
[1 − cos(θm)] (59)
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FIG. 8. (Color online) Simulated dephasing times in units of 2/α2 for diabatic (a) Z and (b) X noises, calculated with α2/2π = 9 MHz.
In (a), the superpositions a|±,m〉 + b|∓,m − 1〉 have T2 times of 2/α2 at B � 0.6 T and approximately 4/α2 at the frequency minima.
Superpositions a|±,m〉 + b|±,m − 1〉 also have T2 times of 4/α2 at the frequency minima. However, as B increases, these become NMR
transitions and will have T2 times of 2/(α2δ). The color bar has been truncated after three to aid visibility but the maximum value reaches as
high as ∼100. In (b), the T2 time does not vary by much and reaches its maximal points at fields less than the frequency minima.
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FIG. 9. (Color online) Simulated depolarizing times for diabatic Z and X noise with α2/2π = 9 MHz. (a) Given Z noise, the decay of
tr[σzρ̃(t)] within each m subspace is always exponential. For m � 0, the T1 time reaches a minimum at the avoided crossing cancellation
resonances. The T1 times for subspaces m and m − 1 become identical at the frequency minima. (b) Given X noise, the decay in the
{|+,m〉, |−,m − 1〉} and {|−,m〉, |+,m − 1〉} subspaces follows an exponential curve at high magnetic fields, but at low magnetic fields such
as the frequency minima, it follows a double exponential fit.

and for superpositions of type a|±, ± (I + 1
2 )〉 + b|∓,m〉, the

dephasing rate is given by

1

T2
= α2

4
[1 + cos(θm)]. (60)

The depolarization rate can be calculated as in the previous
case, using Eq. (57) and noting that one of T

g/e

1 is equal to
∞. The steady-state solution for diabatic Z noise for such
superpositions is given by

n(∞) = 1 ⊗ 1 + c1σ̂z ⊗ 1 + c21 ⊗ σ̂z. (61)

For diabatic Z noise, Fig. 7 shows the analytical depolariza-
tion and dephasing rates for subspace m = −3,m − 1 = −4
in Si:Bi. Figure 8(a) shows the numerically calculated T2 times
for all EPR lines depicted in Fig. 2(b), whilst Fig. 9(a) shows
the numerically calculated depolarising times T1 in units of
2/α2 for each m subspace.

B. X noise

X noise is less trivial, as it couples all components of the
Hilbert space so we cannot consider a sub-Hamiltonian in
isolation. Solving the resulting 400 Bloch equations (for Si:Bi)
would be unfeasible, so only numerical calculations are given
here. Furthermore, the adiabatic condition must be violated for
X noise to have any effect, as there are no Ŝx(� = 0) terms in
Eq. (36). In the high-field limit, the X noise operator will take
the form of σ̂x ⊗ 1 in the basis {|+,m〉,|−,m − 1〉} as well
as {|−,m〉,|+,m − 1〉}. At such fields, as shown in Fig. 6(c),
an arbitrary superposition of a|±,m〉 + b|∓,m − 1〉 suffers a
two-level system depolarizing channel. At low fields, however,
the dissipation is not contained within the m,m − 1 subspace,

and as indicated by Fig. 6(b) the system eventually decays
to 1

d
1.

For X noise, all dephasing is a result of the depolarising
noise that is affected by the X noise operator, and as shown
in Fig. 8(b), at B > 0.6 T, the dephasing time is 4/α2 for all
transitions. This value increases only slightly at magnetic fields
smaller than the frequency minima for transitions involving
m < 0.

Figure 9(b) shows the different forms of depolarising
rates for X noise. At high magnetic fields, where the only
nonvanishing matrix elements of the X noise operator are
〈±,m|Ŝx |∓,m − 1〉, the depolarizing noise follows an expo-
nential decay. Under intermediate magnetic fields, however,
the dissipation follows a more complicated mechanism and
the decay is better explained by a double exponential fit.

V. CONCLUSIONS

A coupled nuclear-electronic spin system with large hy-
perfine coupling strength A will have its eigenstates as
superpositions of the z-axis spin basis states at appreciably
large magnetic fields, which we call the intermediate-field
regime. This will allow for performing EPR transitions
between eigenstates that, at high-field, are EPR forbidden and
would require NMR pulses, which are orders of magnitude
slower. We have shown that this allows for two-qubit universal
quantum computation to be performed with only the use of
EPR pulses. Si:P has A/2π = 117.5 MHz, so it will be in the
intermediate-field regime when B ∼ 0.02 T. At such a low
field, the transition frequencies are of the order � 0.5 GHz.
With Si:Bi, on the other hand, with A/2π = 1.4754 GHz, the
intermediate-field condition is satisfied when B ∼ 0.5 T and
the transition frequencies are of order �10 GHz. For current
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EPR technology, operation in the intermediate-field regime is
easier to carry out on Si:Bi. Indeed, this has been recently
demonstrated experimentally in Ref. 12.

For a nuclear-electronic spin system with I � 1, can-
cellation resonances can be seen at nonvanishing magnetic
fields; Si:P has only one cancellation resonance at B � 0 T,
whereas Si:Bi has a series of cancellation resonances at B �
0.3 T. Furthermore, interesting effects such as decoherence
reduction, associated with df /dB = 0 points, occur between
eigenstates belonging to two different subspaces that have a
cancellation resonance. As a result, Si:P with I = 1/2 does
not have any df /dB = 0 regions and hence no decoherence
reduction points, whereas Si:Bi with I = 9/2 has several.
The combination of fast EPR quantum gates and decoherence
reduction makes Si:Bi an attractive system for quantum
information processing.
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APPENDIX A: SELECTIVE ROTATIONS

Consider the coupled nuclear-electronic spin system in
the eigenbasis of the Hamiltonian Ĥ0 given by Eq. (1). The
electron spin operators in this basis are given by the unitary
transformation

Ŝ ′
x = V †ŜxV and Ŝ ′

y = V †ŜyV , (A1)

where V is a matrix whose ith column is the ith eigenvector
of Ĥ0. We want to be able to isolate two eigenstates of this
Hamiltonian, and perform unitary dynamics in that subspace.
Tracing out all eigenvectors other than |e〉 and |g〉 gives

(Ŝ ′
x)eg = 1

2

(
0 |e〉〈e|(Ŝ+ + Ŝ−)|g〉〈g|

|g〉〈g|(Ŝ+ + Ŝ−)|e〉〈e| 0

)

= η

2
σ̂x,

(Ŝ ′
y)eg = i

2

(
0 |e〉〈e|(Ŝ− − Ŝ+)|g〉〈g|

|g〉〈g|(Ŝ− − Ŝ+)|e〉〈e| 0

)

= signy

η

2
σ̂y, (A2)

where η = 〈e|Ŝx |g〉 is a measure of basis state mixing
and signy = 〈e|Ŝz + Îz|e〉 − 〈g|Ŝz + Îz|g〉 ∈ {1,−1}. As the
absolute energies given by the eigenvalues are meaningless
physically, we can rescale the eigenvalues of Ĥ0 by adding
to it an identity term − (λe+λg)

2 1 such that λe and λg are the
eigenvalues of eigenvectors |e〉 and |g〉, respectively, where
λe > λg . This gives

Ĥ0 �→ Ĥ
ς

0 = �0

2
σ̂ eg

z ⊕ Ĥ rem
0 , (A3)

such that �0 = |λe − λg|, and σ
eg
z is exists in the {|e〉,|g〉}

subspace. Given a perturbative Hamiltonian of the form
in Eq. (26), and assuming that all EPR-allowed transition
frequencies are unique, we may solve the Liouville-von
Neumann equation for the two-level subsystem in the rotating
frame of Ĥ

ς

0 , while making the rotating wave approximation:

d

dt
ρ̃(t) = i

ω1

2
[ρ̃(t),eitH

ς

0 {[cos(�0t)(Ŝ
′
x/y)eg

+ sin(�0t)(Ŝ
′
y/x)eg] + [cos(�0t)(Ŝ

′
x/y)eg

− sin(�0t)(Ŝ
′
y/x)eg]}e−itH

ς

0 ]

= i
ω1η

4
[ρ̃(t),σ̂x/y] + i

ω1η

4
[ρ̃(t), cos(2�0t)σ̂x/y

− sin(2�0t)σ̂y/x]

≈ i
ω1η

4
[ρ̃(t),σ̂x/y] if ω1 � �0. (A4)

There are two possible regimes for the dynamics of this
system. Those for which signy is positive (negative), which
occurs when increasing the energy of the system corresponds
to an increase (decrease) in z-axis total magnetisation m.
In the case that signy = 1, the circular polarization needed
to achieve resonance with the Hamiltonian is of the form
cos(�0t)Ŝx/y + sin(�0t)Ŝy/x . We call this the right-handed
(RH) field. When signy = −1, the circular polarization must
be of the form cos(�0t)Ŝx/y − sin(�0t)Ŝy/x , which we call
the left-handed (LH) field. Table IV shows the form that
matrices (Ŝ ′

x/y)eg take for both regimes and the polarization
of the magnetic field required to achieve resonance.

TABLE IV. Pauli operators for the truncated two-level system under resonance in the right-handed and left-handed regimes. The bottom
row indicates the polarization that the Vx/y(t) term must have in order to effect a e±i θ

2 σ̂x/y operator in the rotating frame.

Right-handed Left-handed

signy 〈e|Ŝz + Îz|e〉 − 〈g|Ŝz + Îz|g〉 = 1 〈e|Ŝz + Îz|e〉 − 〈g|Ŝz + Îz|g〉 = −1

(Ŝ ′
x)eg 1

2

(
0 |e〉〈e|Ŝ+|g〉〈g|

|g〉〈g|Ŝ−|e〉〈e| 0

)
= η

2 σ̂x
1
2

(
0 |e〉〈e|Ŝ−|g〉〈g|

|g〉〈g|Ŝ+|e〉〈e| 0

)
= η

2 σ̂x

(Ŝ ′
y)eg i

2

(
0 −|e〉〈e|Ŝ+|g〉〈g|

|g〉〈g|Ŝ−|e〉〈e| 0

)
= η

2 σ̂y
i

2

(
0 |e〉〈e|Ŝ−|g〉〈g|

−|g〉〈g|Ŝ+|e〉〈e| 0

)
= − η

2 σ̂y

(Ĥ ς
o )eg �0

2 σ̂z
�0
2 σ̂z

rotating field cos(�0t)Ŝx/y + sin(�0t)Ŝy/x cos(�0t)Ŝx/y − sin(�0t)Ŝy/x
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APPENDIX B: MASTER EQUATION DERIVATION

Taking the Hamiltonian from Eq. (1) and adding to it a
perturbative term involving independent temporal magnetic-
field fluctuations in all three spatial dimensions, all of which
take a Gaussian distribution with mean 0 and variance α2

n,
gives in the interaction picture:

H̃ (t) =
3∑

n=1

ωn(t)S̃n(t) + ωn(t)δĨn(t), (B1)

where {Sn} and {In} are the n-axis electron and nuclear spin
operators, respectively, and ωn(t) is the corresponding electron
Zeeman frequency at time t . As before, δ represents the ratio
of the nuclear to electronic Zeeman frequencies, and as it is
small, we may ignore the nuclear term. We then write the
Liouville-von Neumann equation in differential-integral form
and take the average over the field fluctuations. Noting that
〈 d

dt
ρ̃(t)〉 = d

dt
〈ρ̃(t)〉 we may write this as

d

dt
〈ρ̃(t)〉 = i

3∑
n=1

〈ωn(t)〉[〈ρ̃(t)〉,S̃n(t)] −
3∑

n=1

∫ t

t0

ds

×〈ωn(t)ωn(s)〉[[〈ρ̃(t)〉,S̃†
n(t)],S̃n(s)], (B2)

where assigning S̃n(t) = S̃
†
n(t) is valid as it is a Hermitian

operator. 〈ρ̃(t)〉 is the density operator for the nuclear-
electronic system, averaged either over an ensemble of such
systems, or over many repeated experiments on the same
system. Here, we have assumed that the field fluctuation
statistics are independent of the quantum state of our system.
These assumptions and approximations lead to a Born-Markov
master equation. As ωn(t) follows a Gaussian distribution with
mean 0, the first term of this equation vanishes. Given that the
correlation function drops to zero at finite values, we may set
the integration limits to t0 = 0 and t = ∞, and change the
integration constant to τ = t − s. As the temporal fluctuation
takes a Gaussian distribution, we may set our correlation
functions to be another Gaussian function of the form

〈ωn(t)ωn(t − τ )〉 = α2
n

2
√

πχn

e
− τ2

4χn , (B3)

where χn = (dBn/dt)−1 is an inverse function of how fast the
magnetic field fluctuates. In the limiting case of dBn/dt → ∞,
the correlation function tends to α2

nδ(τ ). To aid our calculation,
we may write the noise operators in the basis of the eigenstates
of Ĥ0 labeled {|a〉,|b〉}:

Ŝn =
∑
�

Ŝn(�),

(B4)
Ŝn(�) =

∑
a,b

δ(ωba − �)|a〉〈a|Ŝn|b〉〈b|.

Moving such operators to the interaction picture simply gives
e−i�t Ŝn(�). This gives

d

dt
〈ρ̃(t)〉 = −α2

n

3∑
n=1

∑
�,�′

∫ ∞

0

dτ

2
√

πχn

e
− τ2

4χn ei�τ eit(�′−�)

× [[〈ρ̃(t)〉,Ŝ†
n(�′)],Ŝn(�)]. (B5)

If α2 � �,�′, meaning that the dynamic time scale of
our system is much shorter than that of the decoherence
caused by the magnetic-field fluctuation, which is a reason-
able assumption for systems of interest, we may make the
rotating wave approximation (often also referred to as the
secular approximation) and drop all terms where � �= �′.
Furthermore, noting that [A,[B,C]] = ABC − BCA + H.c.
(Hermitian conjugate) if A,B,C are Hermitian operators leads
to

d

dt
〈ρ̃(t)〉 = α2

n

3∑
n=1

∑
�

∫ ∞

0

dτ

2
√

πχn

e
− τ2

4χn ei�τ

× [Ŝ†
n(�)〈ρ̃(t)〉Ŝn(�) − 〈ρ̃(t)〉Ŝ†

n(�)Ŝn(�)]

+ H.c.

(B6)

We may decompose the integrand to∫ ∞

0

dτ

2
√

πχn

e
− τ2

4χn ei�τ = υn(�) + iϒn(�), (B7)

where

υn(�) = 1

2

∫ ∞

−∞

dτ

2
√

πχn

e
− τ2

4χn ei�τ = 1

2
e−χn�

2
,

(B8)

ϒn(�) = 1

2i

∫ ∞

0

dτ

2
√

πχn

e
− τ2

4χn (ei�τ − e−i�τ ).

Plugging these expressions into Eq. (B6) and moving back
into the Schrödinger picture, gives us our final master equation:

d

dt
〈ρ(t)〉 = i[〈ρ(t)〉,Ĥ0 + ĤLS]

+α2
n

3∑
n=1

∑
�

e−χn�
2

{
Ŝ†

n(�)〈ρ̃(t)〉Ŝn(�)

− 1

2
[〈ρ̃(t)〉,Ŝ†

n(�)Ŝn(�)]+

}
, (B9)

where

HLS =
∑

n

∑
�

ϒn(�)Ŝ†
n(�)Ŝn(�) (B10)

is the Lamb shift and changes the energy levels of the system.
This is a negligible effect and hence can be ignored. We use
[A,B]+ := AB + BA as the anticomutator operator.
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