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Introduction

When particles are suspended in a fluid, they are found in a very animated and irregular state of
motion. A description of such a phenomenon can already be found in an article by Jan Ingenhousz
published in 1784. Nevertheless, nowadays this motion is known as Brownian motion, named after
Robert Brown. He observed this phenomenon in 1827 while studying pollen grains of the plant
Clarckia pulchella. The first persons who put Brownian motion in a mathematical framework were
Thorvald Thiele in 1880 and Louis Bachelier in 1900. However, it was not until the work of Albert
Einstein in 1905 and of Marian Smoluchowski in 1906 that the theory of Brownian motion really
got started, cf. [14]. A nice collection of historical articles regarding Brownian motion, including
Ingenhousz’s and Brown’s work, can be found under [7].

This essay serves as an introduction to the well-developed field of Brownian motion on a Rie-
mannian manifold. The main two chapters are Chapters 4 and 5. After giving a definition of
Brownian motion on a Riemannian manifold at the beginning of Chapter 4, we continue by dis-
cussing characterisations of Brownian motion using stochastic differential equations, in terms of
discrete approximations and via the heat equation. In Chapter 5, we then analyse the recurrence
and transience behaviour of Brownian motion. We conclude by presenting concrete examples of
Riemannian manifolds for which one can decide whether Brownian motion on them is recurrent or
transient. For the most part, these two chapters are based on Emery [3], Feres [4], Grigor’yan [5]
and Hsu [9], with the details added in.

We shall assume basic knowledge of Differential Geometry, including manifolds and their tangent
spaces. The definitions of any further concepts we need from Differential Geometry are given in
Chapter 2. Moreover, in Chapter 3 we set up all the required notions from Stochastic Calculus on
manifolds. However, we shall assume familiarity with probability theory up to Stochastic Calculus
on R. A reader who is unfamiliar with the definitions of filtrations, stopping times, real-valued
semimartingales or the Itô integral could consult Rogers, Williams [15] and [16] beforehand.

In Chapter 1, we recall the definition of Brownian motion on Rd. Furthermore, in order to motivate
the different characterisations of manifold-valued Brownian motion, which we give in Chapter 4,
we briefly present alternative ways of characterising Brownian motion on Rd.

Throughout the entire essay we adopt the following conventions. Our manifolds are smooth and
the underlying topological space is assumed to be Hausdorff, second-countable and connected. We
write TxM to denote the tangent space to the manifold M at the point x ∈ M and Cn(M) for the
space of n-times continuously differentiable functions from M to R. Moreover, we always work on
a complete probability space and any filtration is assumed to satisfy the usual conditions, i.e. it is
right-continuous and contains all the null sets. We also only consider continuous semimartingales
which allows us to simply call them semimartingales. Finally, we use [·, ·] to denote the quadratic
covariation of two semimartingales, whereas �·, ·� is reserved for the Euclidean inner product.

Acknowledgment
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essay topic in the first place.
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1 Motivation

To begin with, we recall the definition of a standard Brownian motion on Rd.

Definition 1.1 Let X = (Xt)t≥0 be a continuous stochastic process defined on a probability space
(Ω,F ,P) and taking values in Rd. We call X a standard Brownian motion on Rd if it satisfies that

(i) X0 = 0 ,

(ii) for any 0 ≤ t0 < t1 < . . . < tn, the increments Xtn −Xtn−1
, . . . , Xt1 −Xt0 are independent,

and

(iii) for any 0 ≤ s < t, the increment Xt −Xs has normal distribution N (0, (t− s)Id), where Id
denotes the identity matrix.

We adopt the convention that any stochastic process Y = (Yt)t≥0 given by Yt = Xt + a for a
standard Brownian motion X = (Xt)t≥0 on Rd and a ∈ Rd is called a Brownian motion on Rd.
Moreover, if (Ft)t≥0 is a filtration on (Ω,F ,P) we say that X is a Brownian motion in (Ft)t≥0 if
X is adapted to (Ft)t≥0 and for all s ≥ 0 the process (Xt+s − Xs)t≥0 is independent of Fs. In
particular, X = (Xt)t≥0 is then a martingale on the filtered probability space (Ω,F , (Ft)t≥0,P).

Let Pa denote the law of a Brownian motionX = (Xt)t≥0 on Rd starting at a ∈ Rd. By property (iii)
in Definition 1.1, it follows that for t > 0 and any Borel subset C of Rd

Pa(Xt ∈ C) =
1

(2πt)d/2

�

C

e−�y−a�2/2t dy .

In Section 4.3, we establish a generalised version of this formula valid for Brownian motion on a
Riemannian manifold.

The following theorem says that one can obtain a real-valued standard Brownian motion as the
limit of a sequence of random walks on the integers scaled in the right way. Thereby, we use �t� to
denote the greatest integer less than or equal to t.

Theorem 1.2 (Donsker’s invariance principle) Let (ξn)n∈N be a sequence of independent and
identically distributed real-valued random variables with E[ξ1] = 0 and E[ξ21 ] = σ2 < ∞. Let

Sk =
k�

i=1

ξi

denote the kth partial sum. Then the stochastic processes X(n) =
�
X

(n)
t

�
t≥0

which are defined by

X
(n)
t =

1

σ
√
n
Rnt , where Rt = S�t� + (t− �t�)ξ�t�+1 ,

are continuous and converge weakly to a Brownian motion on R.

A proof is given in Karatzas, Shreve [11, Chapter 2]. To approximate a standard Brownian motion
on Rd by scaled random walks on Zd, one can take d independent sequences

(ξ1,n)n∈N , (ξ2,n)n∈N , . . . , (ξd,n)n∈N

of independent and identically distributed real-valued random variables with zero mean and finite

variance. If we define X
(n)
i in terms of (ξi,m)m∈N as X(n) is defined in terms of (ξm)m∈N then

�
X

(n)
1 , X

(n)
2 , . . . , X

(n)
d

�
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converges weakly to a Brownian motion on Rd as n → ∞.

In Proposition 1.5, we find another alternative characterisation of Brownian motion on Rd. This
new characterisation has the advantage that it can be generalised to a Riemannian manifold. The
latter is done in Chapter 4.

For the rest of this chapter, we work on a filtered probability space (Ω,F , (Ft)t≥0,P). A continuous
stochastic process X = (Xt)t≥0 taking values in Rd is called a semimartingale on Rd if and only
if Xi = (Xi

t)t≥0 is a semimartingale on R for each 1 ≤ i ≤ d. Similarly, one defines Rd-valued
local martingales. Moreover, we have the following two important theorems. For proofs we refer to
Rogers, Williams [16, VI. 39 and IV. 33].

Theorem 1.3 (Itô’s formula) If X = (Xt)t≥0 is a semimartingale on Rd and f ∈ C2(Rd) then
(f(Xt))t≥0 is a semimartingale on R satisfying

f(Xt) = f(X0) +

d�

i=1

� t

0

∂f

∂xi
(Xs) dX

i
s +

1

2

d�

i,j=1

� t

0

∂2f

∂xi∂xj
(Xs) d

�
Xi, Xj

�
s
.

Theorem 1.4 (Lévy’s characterisation of Brownian motion) An Rd-valued semimartin-
gale X = (Xt)t≥0 is a Brownian motion on Rd if and only if X is a local martingale and�
Xi, Xj

�
t
= tδij for 1 ≤ i, j ≤ d .

As shown in the proof of the next proposition, Lévy’s characterisation is a nice tool to determine
whether a given semimartingale is a Brownian motion. In the following, let Δ denote the usual
Laplace operator on Rd, i.e.

Δ =
d�

i=1

�
∂

∂xi

�2

.

Proposition 1.5 An Rd-valued semimartingale X = (Xt)t≥0 is a Brownian motion on Rd if and
only if for all f ∈ C∞(Rd) the process N = (Nt)t≥0 given by

Nt = f(Xt)− f(X0)−
1

2

� t

0

Δf(Xs) ds

is a local martingale on R.

Proof. Suppose X is a Brownian motion. From Lévy’s characterisation, we know
�
Xi, Xj

�
t
= tδij

for 1 ≤ i, j ≤ d. Thus, we have

d�

i,j=1

∂2f

∂xi∂xj
(Xs) d

�
Xi, Xj

�
s
=

d�

i=1

∂2f

(∂xi)
2 (Xs) ds = Δf(Xs) ds

and Itô’s formula yields

Nt =

d�

i=1

� t

0

∂f

∂xi
(Xs) dX

i
s .

By Lévy’s characterisation, we also know that X is a local martingale, i.e. Xi is a local martingale
for each 1 ≤ i ≤ d. Since the Itô integral preserves local martingales, it follows that N is indeed a
local martingale.

Conversely, suppose that f(Xt)−f(X0)− 1
2

� t

0
Δf(Xs) ds is a local martingale for each f ∈ C∞(Rd).

By taking f = xi, which is a smooth function on Rd satisfying Δf ≡ 0, we deduce that

N i
t = Xi

t −Xi
0
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is a local martingale for each 1 ≤ i ≤ d. In particular, X = (Xt)t≥0 is a local martingale. Further-
more, by considering f = xixj , which satisfies Δf = 2δij , we obtain that

N ij
t = Xi

tX
j
t −Xi

0X
j
0 − 1

2

� t

0

2δij ds

= Xi
tX

j
t −Xi

0X
j
0 − tδij (1.1)

is a local martingale. However, ifN and �N are local martingales on R then
�
N, �N

�
is the unique con-

tinuous adapted process A = (At)t≥0 of finite variation with A0 = 0 and such that (Nt
�Nt−At)t≥0

is a local martingale. Hence, (1.1) implies that
�
Xi, Xj

�
t
= tδij . From Lévy’s characterisation, we

conclude that X is a Brownian motion on Rd, as claimed. �
In Chapter 4, we show that the preceding proposition is in fact a special case of Theorem 4.7, which
is taken from Hsu [9]. The proof we gave for Proposition 1.5 is a simplified version of the proof of
Theorem 4.7. However, it does still illustrate the main ideas used in the more general proof.
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2 Concepts needed from Differential Geometry

In the next two chapters, we set up the Differential Geometry and the Stochastic Calculus needed
to discuss Brownian motion on a Riemannian manifold.

Remark 2.1 In this chapter only, we use X and Y to denote vector fields. Throughout the rest
of the essay, the letters X and Y are reserved for stochastic processes.

2.1 Riemannian manifolds and the Laplace-Beltrami operator

Working on Rd we always have the Euclidean inner product at hand, and for instance, we need it
to define the usual Laplace operator Δ. When we aim to generalise Brownian motion to manifolds,
we therefore want to work on manifolds which are equipped with a Riemannian metric.

Definition 2.2 Let M be a manifold. A Riemannian metric on M is a smooth tensor field h ∈
Γ(T ∗M ⊗ T ∗M) such that hx ∈ T ∗

xM ⊗ T ∗
xM is symmetric and positive definite for all x ∈ M .

By our topological assumptions on a manifold M , it always admits a Riemannian metric.

Definition 2.3 A Riemannian manifold is a pair (M,h) consisting of a manifold M and a Rie-
mannian metric h on M .

For a Riemannian manifold (M,h), we adopt the shorthand notation M with the presence of the
Riemannian metric h being understood. We also set d = dimM .

Our next aim is to define the Laplace-Beltrami operator ΔM on a Riemannian manifold M . It is a
well-known fact from Differential Geometry, e.g. see Kobayashi, Nomizu [12, Chapter 4], that for a
given Riemannian manifold M there exists a unique covariant derivative ∇ on M which is metric,
i.e.

X(h(Y,Z)) = h(∇XY, Z) + h(Y,∇XZ) for all X,Y, Z ∈ Γ(TM) ,

and torsion-free, i.e.

∇XY −∇Y X − [X,Y ] = 0 for all X,Y ∈ Γ(TM) .

The unique such covariant derivative is called the Levi-Civita connection.

Let f ∈ C∞(M) be a smooth function on M and let x ∈ M be fixed. Since hx is positive definite,
we can define (grad f)x to be the unique vector v0 ∈ TxM satisfying

h(v0, v) = (df)x(v) = v(f) for all v ∈ TxM .

This gives rise to a vector field grad f on M . In the following, let (E1, E2, . . . , Ed) be a local
orthonormal frame. For a vector field X ∈ Γ(TM) we define the divergence divX of X by

divX =

d�

i=1

h(∇Ei
X,Ei) ,

where ∇ is the Levi-Civita connection on M . Since divX is the trace of ∇X : TM → TM it does
not depend on the choice of the local orthonormal frame (E1, E2, . . . , Ed).

Since grad f is a vector field onM , one can particularly consider div grad f . It is clear that div grad f
is also well-defined for functions f ∈ C2(M). In fact, the Laplace-Beltrami operator ΔM is applied
to twice-continuously differentiable functions f ∈ C2(M) and yields a new function ΔMf on M
defined by

ΔMf = div grad f .

For instance, if we consider the manifold M = Rd equipped with the Euclidean inner product, then
ΔM agrees with the usual Laplace operator Δ on Rd.

In our discussions in Chapter 4 we need the following lemma, which can be found in Hsu [9].
Thereby, ∇2f = ∇(df) is the Hessian of a function f ∈ C2(M).
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Lemma 2.4 Let M be a Riemannian manifold. For f ∈ C2(M) it holds true that

ΔMf =

d�

i=1

∇2f(Ei, Ei) ,

i.e. ΔMf equals the trace of ∇2f .

Proof. From the definition of ΔMf , we have

ΔMf =

d�

i=1

h(∇Ei grad f,Ei) .

By using the definition of grad f and the fact that ∇ is compatible with the metric, we deduce

h(∇Ei grad f,Ei) = Ei(h(grad f,Ei))− h(grad f,∇EiEi)

= Ei(df(Ei))− df(∇EiEi)

= (∇Eidf)(Ei)

= ∇2f(Ei, Ei)

for each 1 ≤ i ≤ d . Summing over i yields the desired expression. �

2.2 Principal bundles and connections

For one of the characterisations of Brownian motion on a Riemannian manifold, we need an un-
derstanding of principal bundles and connections defined on such bundles. Here, we only give the
formal definitions, which one finds in many classical textbooks on Differential Geometry, e.g. in
Kobayashi, Nomizu [12, Chapter 1 and 2].

To define a principal bundle, we need to know what a Lie group is.

Definition 2.5 A Lie group G is both a manifold and an algebraic group with the additional
property that the map

G×G −→ G

(g, a) �−→ ga−1

is smooth.

The general linear group GL(d) and the orthogonal group O(d) of degree d over the real numbers
are examples of Lie groups. We meet both groups again when we present examples of principal
bundles.

Definition 2.6 Let M,P be manifolds, let G be a Lie group and let π : P → M be a smooth
map. We call (P,π,M,G) a principal bundle over M with structure group G if the following three
conditions are satisfied.

(i) G acts freely on P on the right, i.e. there is an action

P ×G −→ P

(p, g) �−→ Rg(p) = p · g

with the property that if Rg(p) = p for some p ∈ P then g is the unit element of G.

(ii) For p1, p2 ∈ P , there exists some g ∈ G with p2 = Rg(p1) if and only if π(p1) = π(p2).

9



(iii) For any x ∈ M there exists an open set Ux ⊂ M and a diffeomorphism ψx : π
−1(Ux) → Ux×G

such that ψx = (π,φx) for some map φx : π
−1(Ux) → G satisfying

φx(p · g) = φx(p)g

for all p ∈ π−1(Ux) and all g ∈ G.

One calls P the total space and M the base space of the principal bundle. Moreover, Px = π−1(x)
is called the fibre over x. By conditions (i) and (ii), the action is free and transitive on each fibre.
Furthermore, the diffeomorphisms ψx are also called local trivialisations and π is called projection.
We note that π must be surjective by condition (iii).

Our first example of a principal bundle is the so-called trivial bundle.

Example 2.7 Let M be a manifold and let G be a Lie group. We claim that (M × G,π,M,G)
is a principal bundle with π : M × G → M being the projection onto the first factor and with the
action of G on M ×G given by

Rg2 ((m, g1)) = (m, g1g2)

for (m, g1) ∈ M ×G and g2 ∈ G. Indeed, for any x ∈ M we can choose

Ux = M and ψx = (id, id) : M ×G → M ×G

to satisfy condition (iii) of Definition 2.6.

In the following, we frequently denote a principal bundle (P,π,M,G) by P only. With that notation,
the next example introduces the frame bundle F (M) over a manifold M .

Example 2.8 Let M be a manifold of dimension d. For a fixed x ∈ M , let F (M)x be the set of
all linear isomorphisms u : Rd → TxM . One generally calls an element u ∈ F (M)x a frame at x.
We now set

F (M) =
�

x∈M

F (M)x .

For each u ∈ F (M) there exists a unique x ∈ M such that u ∈ F (M)x. Thus, we can define
a map π : F (M) → M by π(u) = x. Furthermore, an element g ∈ GL(d) can be considered as
a linear isomorphism g : Rd → Rd. Therefore, if g ∈ GL(d) acts on the right of u ∈ F (M)x by
composition, then

u · g : Rd g−→ Rd u−→ TxM

is a linear isomorphism, i.e. u ·g ∈ F (M)x. In particular, this action of GL(d) on F (M) preserves
the fibres F (M)x and is transitive on each fibre. Moreover, by using the charts on M one can give
F (M) the structure of a manifold such that condition (iii) in Definition 2.6 is also satisfied. This
makes (F (M),π,M,GL(d)) into a principle bundle.

If the underlying manifold M is equipped with a Riemannian metric h, one can construct the
orthonormal frame bundle O(M) as another example of a principal bundle.

Example 2.9 Let M be a Riemannian manifold and let x ∈ M be fixed. We call u : Rd → TxM a
linear isometry if u is a frame at x which satisfies

�a, b� = h(ua, ub) for all a, b ∈ Rd .

Hereby, �·, ·� denotes the usual Euclidean inner product on Rd. In particular, if {e1, e2, . . . , ed} is
the standard basis of Rd then {uei}1≤i≤d is an orthonormal basis of TxM . Let O(M)x be the set
of all linear isometries u : Rd → TxM and let

O(M) =
�

x∈M

O(M)x .
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An element g ∈ O(d) is a linear isometry g : Rd → Rd. Hence, O(d) acts on the right on O(M)
by composition. If we also let π : O(M) → M be the obvious projection map, one can equip O(M)
with a manifold structure which turns (O(M),π,M,O(d)) into a principal bundle.

Before we present the formal definition of a connection on a principal bundle (P,π,M,G), we aim
to get an intuitive idea of what a connection gives us. For a fixed p ∈ P , set x = π(p) and let
Px = π−1(x) be the fibre over x. We observe that TpP contains the tangent space TpPx of the fibre
Px at the point p as a subspace. For obvious reasons, we call TpPx the vertical subspace of TpP and
elements of TpPx vertical vectors. Moreover, we use VpP as notation for TpPx. Having defined the
vertical subspace, we would like to get a notation of horizontal subspace. This is in fact provided
by a connection.

Definition 2.10 A connection on a principal bundle (P,π,M,G) is a smooth map which assigns
a subspace HpP ⊂ TpP to each p ∈ P such that

(i) TpP = VpP ⊕HpP , and

(ii) Hp·gP = (Rg)∗HpP for every p ∈ P and g ∈ G.

Hereby, (Rg)∗ denotes the differential of the transformation Rg : P → P .

In Kobayashi, Nomizu [12, Chapter 2] it is proved that for the manifolds we consider, a principle
bundle always admits a connection. We call HpP the horizontal subspace of TpP and elements of
HpP horizontal vectors. However, we need to remember that the horizontal subspace of TpP does
depend on the chosen connection as different connections give rise to different horizontal subspaces.

It remains to discuss the concept of a horizontal lift. Let (P,π,M,G) be a principal bundle with
a connection. One easily checks that at every point p ∈ P the differential of π yields a linear
isomorphism (π∗)p : HpP → Tπ(p)M . Thus, for any vector v ∈ Tπ(p)M there exists a unique
horizontal vector v∗p ∈ HpP such that (π∗)p(v∗p) = v. We call v∗p the horizontal lift of v to p.

This defines all the concepts from Differential Geometry we necessarily need in later parts of the
essay. However, for one example in Chapter 4 it is convenient to know how one can use connection
forms to obtain horizontal subspaces HpP satisfying the conditions of Definition 2.10.

Definition 2.11 A connection form ω on a principal bundle (P,π,M,G) is a 1-form on P taking
values in the Lie algebra g of G and satisfying the following conditions.

(i) For every g ∈ G and every vector field X on P we have ω((Rg)∗X) = Ad
�
g−1

�
ω(X), where

Ad denotes the adjoint representation of G in g.

(ii) For every Y ∈ g and p ∈ P it holds true that ω
�
�Yp

�
= Y , where

�Yp =
d

dt

����
t=0

(p · exp(tY )) .

We get a map ωp : TpP → g and the horizontal subspace at p is given by HpP = ker(ωp). In
fact, for a given principal bundle, the connections and the connection forms on this bundle are in
one-to-one correspondence. For a proof see Kobayashi, Nomizu [12, Chapter 2].
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3 Stochastic Calculus on a Riemannian manifold

Throughout this chapter, our stochastic processes X are defined on a filtered probability space
(Ω,F , (Ft)t≥0,P) and take values in a d-dimensional manifold M . We also allow our processes to
be defined only up to some stopping time. However, we generally consider a process X up to the
maximum stopping time e for which it can be defined on M . We call e the explosion time of X
and write X = (Xt)e>t≥0.

In Section 3.4, we additionally assume that M is a Riemannian manifold.

3.1 Semimartingales and Stratonovich differentials

Let f ∈ C∞(Rd) be a smooth function and let X = (Xt)t≥0 be a semimartingale on Rd. From
Itô’s formula, it follows that (f(Xt))t≥0 is a semimartingale on R. This motivates the following
definition.

Definition 3.1 Let X = (Xt)e>t≥0 be a continuous stochastic process taking values in a manifold
M . We call X a semimartingale on M if (f(Xt))e>t≥0 is a semimartingale on R for every smooth
function f ∈ C∞(M).

By the above remark, this definition is consistent with our previous definition of a semimartingale
on Rd.

From Emery [3, Chapter 1], we recall that if X and Y are semimartingales on R then the
Stratonovich integral of X along Y is defined by

� t

0

Xs ∂Ys =

� t

0

Xs dYs +
1

2
[X,Y ]t ,

where
� t

0
Xs dYs is the usual Itô integral of X along Y and [X,Y ]t the quadratic covariation of X

and Y . Moreover, if �X is a semimartingale on Rd and f ∈ C3(Rd) then we have the chain rule

f
�
�Xt

�
= f

�
�X0

�
+

d�

i=1

� t

0

∂f

∂xi

�
�Xs

�
∂ �Xi

s .

This is a consequence of Itô’s formula, see e.g. Rogers, Williams [16, IV. 46] for the 1-dimensional
case, which easily generalises to d dimensions. Using Stratonovich differentials, the chain rule reads

∂f
�
�Xt

�
=

d�

i=1

∂f

∂xi

�
�Xt

�
∂ �Xi

t .

In the following, we mainly want to use the differential notation. For this, we first need to define
the Stratonovich differential ∂X = (∂Xt)e>t≥0 of a semimartingale X = (Xt)e>t≥0 on a manifold
M . Hereby, one may think of ∂X as the equivalent of the tangent vector field to a differentiable
curve. As in Norris [13] we symbolically define

xi
∗(∂Xt) = ∂(Xi

t) (3.1)

for a chart x =
�
x1, x2, . . . , xd

�
around Xt. However, this symbolic definition has to be understood

as part of an integral equation. For instance, if α ∈ Γ(T ∗M) is a 1-form on M one can define the
integral of α along the semimartingale X in the following way. Let 0 ≤ σ ≤ τ < e be random times
with the property that there exists a chart of the manifold M such that Xt(ω) lies in the domain
of that chart for all t satisfying σ(ω) ≤ t ≤ τ(ω). In this chart, we can write

α =

d�

i=1

αi dx
i

12



for smooth functions ai ∈ C∞(M). The integral of α along X between σ and τ is then defined as

� τ

σ

αXs
(∂Xs) =

d�

i=1

� τ

σ

αi(Xs) ∂(X
i
s) . (3.2)

If x̃ =
�
x̃1, x̃2, . . . , x̃d

�
is another chart satisfying the same restrictions as x subject to σ and τ

then

α =

d�

i,j=1

αi
∂xi

∂x̃j
dx̃j

and

∂(Xi
t) = xi

∗(∂Xt) =

d�

j=1

∂xi

∂x̃j
(Xt)x̃

j
∗(∂Xt) =

d�

j=1

∂xi

∂x̃j
(Xt)∂( �Xj

t )

by the symbolic definition (3.1). It follows that

d�

i=1

� τ

σ

αi(Xs) ∂(X
i
s) =

d�

i,j=1

� τ

σ

αi(Xs)
∂xi

∂x̃j
(Xs)∂( �Xj

s ) =

d�

j=1

� τ

σ

α̃j(Xs) ∂( �Xi
s) .

Therefore, (3.2) is independent of the chosen chart and by patching the integral together across
overlapping charts, we can define � t

0

αXs(∂Xs)

for e > t ≥ 0. For more details see Emery [3, Chapter 7]. It is a pleasant feature that the chain
rule for the Stratonovich integral extends to functions on a manifold M .

Lemma 3.2 Let M be a manifold, let f ∈ C∞(M) be a smooth function and let X be a semi-
martingale on M . It holds true that

∂f(Xt) = (df)Xt(∂Xt) .

Proof. We recall that this identity has to be understood as

f(Xt) = f(X0) +

� t

0

(df)Xs(∂Xs) .

Let 0 ≤ σ ≤ τ < e be random times such that there exists a chart x of M with the same properties
as above. By (3.2), we have

� τ

σ

(df)Xs
(∂Xs) =

d�

i=1

� τ

σ

∂f

∂xi
(Xs) ∂(X

i
s) .

Furthermore, the chain rule for semimartingales on Rd yields

d�

i=1

� τ

σ

∂f

∂xi
(Xs) ∂(X

i
s) = (f ◦ x−1) (x(Xτ ))− (f ◦ x−1) (x(Xσ)) = f(Xτ )− f(Xσ) .

Patching integrals together across overlapping charts gives the desired result. �
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3.2 Stochastic differential equations

Having defined Stratonovich differentials, we can now explain what we mean by a stochastic differ-
ential equation (SDE), cf. Emery [3, Chapter 7]. Let M1, M2 be manifolds, let V ∈ Γ(T ∗M1⊗TM2)
be a smooth section over M1 × M2 and let X = (Xt)e>t≥0 be a semimartingale on M1. We say
that a semimartingale Y = (Yt)ζ>t≥0 on M2 with e ≥ ζ is a solution of the stochastic differential
equation

∂Yt = V (Xt, Yt) ∂Xt (3.3)

if for every 1-form α ∈ Γ(T ∗M2)

� t

0

αYs
(∂Ys) =

� t

0

αYs
(V (Xs, Ys) ∂Xs)

holds true for all t < ζ. As stated in Emery [3, Theorem 7.21], we have the following existence and
uniqueness property.

Theorem 3.3 Suppose we are given two manifolds M1 and M2, a section V ∈ Γ(T ∗M1 ⊗ TM2),
a semimartingale X on M1 and an F0-measurable random variable Y0 on M2. Then there exists
a stopping time ζ and a semimartingale Y = (Yt)ζ>t≥0 on M2 starting from Y0 with the following
properties.

(i) Y is a solution of the stochastic differential equation (3.3).

(ii) If ζ is finite then Y explodes at ζ, i.e. for almost every ω ∈ Ω the path (Yt(ω))ζ>t≥0 is not
contained in any compact subset of M2.

(iii) If �Y =
�
�Yt

�
�ζ>t≥0

is another solution of (3.3) starting from �Y0 = Y0 then almost surely �ζ ≤ ζ

and almost surely �Yt = Yt for all 0 ≤ t < �ζ.

We call Y the unique solution of (3.3) up to explosion.

3.3 Quadratic variation of a semimartingale

We would like to have the notion of a quadratic variation process associated to a semimartingale
X on the manifold M . In fact, it turns out to be convenient to define a quadratic variation process
for each tensor field b ∈ Γ(T ∗M ⊗ T ∗M).

Let X be a semimartingale on M . In Emery [3, Theorem 3.8] it is established that there exists a
unique R-linear map, denoted by

b �−→
�

b(dX, dX) ,

from Γ(T ∗M⊗T ∗M) to the space of real-valued continuous stochastic processes with finite variation
such that for all smooth functions f, g ∈ C∞(M) we have

(i)
�
(fb)(dX, dX) =

�
f(X) d

��
b(dX, dX)

�
, and

(ii)
�
(df ⊗ dg)(dX, dX) = [f(X), g(X)] .

We call
�
b(dX, dX) the b-quadratic variation of X and denote its value at t by

� t

0
b(dXs, dXs).

14



3.4 Horizontal lift and stochastic development

Let M be a Riemannian manifold of dimension d and let O(M) be the orthonormal frame bundle
over M . To be able to talk about horizontal vectors in TO(M) we need to choose a connection on
O(M). One can show that there is a one-to-one correspondence between metric covariant derivatives
on M and connections on O(M), cf. Kobayashi, Nomizu [12, Chapter 4]. From now onwards, we
shall equip O(M) with the connection which corresponds to the Levi-Civita connection on M .

In Differential Geometry, we have the following notions. A differentiable curve u = (ut)t∈[a,b] on
O(M) is called a horizontal curve if all its tangent vectors are horizontal. Moreover, if x = (xt)t∈[a,b]

is a differentiable curve on M and ua ∈ O(M) is a fixed frame at xa then a horizontal curve
u = (ut)t∈[a,b] on O(M) starting from ua with π(u) = x is called horizontal lift of x to ua. In fact,
there is a unique curve u satisfying these conditions, cf. Kobayashi, Nomizu [12, Chapter 2]. By
the chain rule, we also have

ẋt = (π∗)ut
(u̇t) ,

where ẋt and u̇t are the tangent vectors to x and u at xt and ut, respectively. Furthermore, the
anti-development w = (wt)t∈[a,b] of the curve x is defined by

wt =

� t

a

u−1
s ẋs ds

for a ≤ t ≤ b. We note that w is a curve on Rd with wa = 0.

If we are given a semimartingale X = (Xt)e>t≥0 on M we would like to talk about its horizontal
lift U = (Ut)e>t≥0 to O(M) as well as its anti-development W = (Wt)e>t≥0 on Rd. The problem
is that a path X(ω) of X for some ω ∈ Ω need not be differentiable. Therefore, we cannot use
the notions of horizontal lift and anti-development as defined above. A definition which works
for semimartingales makes use of the following horizontal vector fields. Let v ∈ Rd be fixed. We
define Hv ∈ Γ(HO(M)) by Hv(u) = (uv)∗u for u ∈ O(M), i.e. Hv(u) is the unique horizontal lift
of uv ∈ TπuM to u. Moreover, if {ei}1≤i≤d denotes the standard basis of Rd we set Hi = Hei .
We observe that at each u ∈ O(M) the horizontal vectors H1(u), H2(u), . . . ,Hd(u) form a basis
of HuO(M). In particular, if u = (ut)t∈[a,b] is a horizontal curve on O(M) we can find curves�
α1
t

�
t∈[a,b]

,
�
α2
t

�
t∈[a,b]

, . . . ,
�
αd
t

�
t∈[a,b]

on R such that

u̇t =

d�

i=1

Hi(ut)α
i
t .

If we let wi
t =

� t

a
αi
s ds , then

u̇t =

d�

i=1

Hi(ut)ẇ
i
t .

In fact, if u is the horizontal lift of a curve x on M then w =
�
w1, w2, . . . , wd

�
is indeed the

anti-development of x. The latter follows from

ẋt = (π∗)ut
(u̇t) = (π∗)ut

�
d�

i=1

Hi(ut)

�
αi
t =

d�

i=1

(utei)α
i
t = ut

�
d�

i=1

eiα
i
t

�

as it gives

u−1
t ẋt =

�
α1
t ,α

2
t , . . . ,α

d
t

�
.

This motivates the following definitions, cf. Hsu [9, Chapter 2.3].
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Definition 3.4 A semimartingale U on O(M) is called horizontal if there exists a semimartingale
W on Rd such that

∂Ut =

d�

i=1

Hi(Ut) ∂W
i
t . (3.4)

By construction, (H1, H2, . . . , Hd) is a global frame of the horizontal bundle HO(M). Let
(H1, H2, . . . , Hd) denote its dual frame. If U is a horizontal semimartingale onO(M) then Equation
(3.4) implies

Hj(Ut) ∂Ut =

d�

i=1

Hj(Ut)Hi(Ut) ∂W
i
t = ∂W j

t

for 1 ≤ j ≤ d. Hence, if we fix W0 then W is uniquely given by

W j
t = W j

0 +

� t

0

Hj(Us) ∂Us .

Definition 3.5 A horizontal lift U of a semimartingale X on M is a horizontal semimartingale
on O(M) such that π(U) = X. Moreover, the unique semimartingale W on Rd satisfying (3.4) and
W0 = 0 is called an anti-development of X.

In Hsu [9, Chapter 2.3], it is proved that for a given semimartingale X = (Xt)e>t≥0 on M and
an F0-measurable random variable U0 on O(M) with π(U0) = X0 there exists a unique horizontal
lift U = (Ut)e>t≥0 starting from U0. In fact, Hsu does not restrict his attention to O(M) until [9,
Chapter 3]. Before that, he still works with the frame bundle F (M). However, one can consider
O(M) as a subbundle of F (M). If one then equips F (M) with a connection which corresponds
to a metric covariant derivative on M and ensures that U0 takes values in O(M) then the unique
horizontal lift U = (Ut)e>t≥0 to F (M) stays in O(M). Thus, we also get uniqueness for the
situation we consider.

Conversely, if W is a semimartingale on Rd and U0 is an F0-measurable random variable on O(M),
then by Theorem 3.3 applied to

V =

d�

i=1

dxi ⊗Hi ∈ Γ
�
T ∗Rd ⊗ TO(M)

�
,

there exists a unique semimartingale U = (Ut)e>t≥0 starting from U0 and satisfying (3.4) up to
explosion. We call X = (Xt)e>t≥0 given by π(U) = X the development of W on M . Moreover, X
is independent of the choice of the initial frame U0 over X0, see Elworthy [2, Lemma 11A].

We use the correspondence between semimartingales X on M and semimartingales W on Rd in
Section 4.1. There we characterise Brownian motion on Riemannian manifolds using stochastic
differential equations.
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4 Equivalent definitions of Brownian motion

In this chapter, we discuss various characterisations of Brownian motion on a Riemannian manifold.
To begin with, we need to agree on one definition and similar to Emery [3, Chapter 5] we make
the following definition.

Definition 4.1 Let M be a Riemannian manifold, let X = (Xt)e>t≥0 be a continuous M -valued
stochastic process defined on a probability space (Ω,F ,P) and let

�
FX

t

�
e>t≥0

denote the natural

filtration generated by the process X. We say that X is a Brownian motion on M if for all smooth
functions f ∈ C∞(M) the process N = (Nt)e>t≥0 given by

Nt = f(Xt)− f(X0)−
1

2

� t

0

ΔMf(Xs) ds

is a local martingale on R in the filtration
�
FX

t

�
e>t≥0

.

Our first observation about Brownian motion is stated in the next lemma.

Lemma 4.2 If X is a Brownian motion on a Riemannian manifold M then X is a semimartingale
on M in the natural filtration

�
FX

t

�
e>t≥0

.

Proof. It suffices to note that for all f ∈ C∞(M) the process A = (At)e>t≥0 defined by

At =
1

2

� t

0

ΔMf(Xs) ds

is an adapted process of finite variation. �

For M = Rd equipped with the Euclidean metric, Definition 4.1 has to be consistent with Defini-
tion 1.1. Indeed, this is ensured by Proposition 1.5 since ΔRd = Δ .

As remarked in Hsu [9, Chapter 3.2], sometimes it is necessary to extend our definition of Brownian
motion slightly. Let (Ω,F , (Ft)t≥0 ,P) be a filtered probability space and let X be a Brownian
motion according to Definition 4.1. If X is additionally adapted to (Ft)t≥0 and satisfies the strong
Markov property with respect to that filtration then we say that X is a Brownian motion in the
filtration (Ft)t≥0. We shall work in this set-up from here onwards.

Having discussed the definition of Brownian motion on a Riemannian manifold we present the first
alternative characterisation, cf. Proposition 4.5. This one is taken from Emery [3, Chapter 5]. It
needs one more definition and one preliminary lemma. Both of them make use of the b-quadratic
variation, and particularly of the ∇2f -quadratic variation, defined in Section 3.3.

Definition 4.3 Let M be a Riemannian manifold equipped with the Levi-Civita connection ∇. A
semimartingale X = (Xt)e>t≥0 on M is called a martingale if

f(Xt)− f(X0)−
1

2

� t

0

∇2f(dXs, dXs)

is a local martingale on R for every smooth function f ∈ C∞(M).

We remark that this is standard terminology, even though it would seem more sensible to call the
martingales we have just defined ‘local martingales’. In particular, a martingale on Rd according
to Definition 4.3 is in fact a local martingale. However, we only consider martingales according to
the new definition up to and including Section 4.1, whereas we do not need true martingales on
Rd according to the usual definition before Section 4.3. Therefore, the terminology just introduced
should not cause any confusions.
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Lemma 4.4 Let M be a Riemannian manifold with metric h. If X = (Xt)e>t≥0 is a semimartin-
gale on M satisfying

[f(X), f(X)]t =

� t

0

h (grad f, grad f) (Xs) ds (4.1)

for every smooth function f ∈ C∞(M) then

� t

0

b(dXs, dXs) =

� t

0

Tr(b)(Xs) ds

for every smooth tensor field b ∈ Γ(T ∗M ⊗ T ∗M).

Proof. Let f, g ∈ C∞(M) be arbitrary. By polarising Equation (4.1), one obtains

[f(X), g(X)]t =

� t

0

h (grad f, grad g) (Xs) ds . (4.2)

Moreover, let (E1, E2, . . . , En) be a local orthonormal frame. We deduce that

Tr(df ⊗ dg) =
d�

i=1

df(Ei)dg(Ei) =

d�

i=1

h (grad f,Ei)h (grad g, Ei)

= h (grad f, grad g)

by Parseval’s identity. From (4.2), it follows that

[f(X), g(X)]t =

� t

0

Tr(df ⊗ dg)(Xs) ds .

By property (ii) of the quadratic variation process, this implies

� t

0

(df ⊗ dg) (dXs, dXs) =

� t

0

Tr(df ⊗ dg)(Xs) ds . (4.3)

Furthermore, under our assumptions on the manifold M every smooth b ∈ Γ(T ∗M ⊗T ∗M) can be
written as

b =

d�

i,j=1

bij df
i ⊗ df j

for smooth functions bij , f
i, f j ∈ C∞(M), see Emery [3, Lemma 2.23]. Hence, from (4.3) and

property (i) of the quadratic variation process, we conclude

� t

0

b(dXs, dXs) =

d�

i,j=1

� t

0

bij(Xs) d

�� s

0

�
df i ⊗ df j

�
(dXr, dXr)

�

=
d�

i,j=1

� t

0

bij(Xs) Tr(df
i ⊗ df j)(Xs) ds

=

� t

0

Tr(b)(Xs) ds ,

as claimed. �

We use the preceding lemma to prove the next proposition.
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Proposition 4.5 Let M be a Riemannian manifold. A semimartingale X = (Xt)e>t≥0 on M is a
Brownian motion if and only if X is a martingale on M and for every smooth function f ∈ C∞(M)
we have

[f(X), f(X)]t =

� t

0

h (grad f, grad f) (Xs) ds . (4.4)

Proof. Let f ∈ C∞(M) be arbitrary. For the ‘if’ direction, we observe that by Lemma 4.4 applied
to ∇2f and by Lemma 2.4

� t

0

∇2f(dXs, dXs) =

� t

0

Tr
�
∇2f

�
(Xs) ds =

� t

0

ΔMf(Xs) ds .

As X is a martingale by assumption, this further implies that

f(Xt)− f(X0)−
1

2

� t

0

ΔMf(Xs) ds = f(Xt)− f(X0)−
1

2

� t

0

∇2f(dXs, dXs) (4.5)

is a local martingale on R. Thus, X is indeed a Brownian motion on M .

Conversely, assume that X is a Brownian motion on M . From

ΔM

�
f2

�
= 2fΔMf + 2h(grad f, grad f)

and the definition of Brownian motion, we deduce that

f2(Xt)− f2(X0)−
� t

0

f(Xs)ΔMf(Xs)−
� t

0

h(grad f, grad f)(Xs) ds (4.6)

is a local martingale. Moreover, if Y is a semimartingale on R then by Itô’s formula

Y 2
t = Y 2

0 + 2

� t

0

Ys dYs + [Y, Y ]t .

Applying this to the real-valued semimartingale Y = (f(Xt))e>t≥0 gives

f2(Xt) = f2(X0) + 2

� t

0

f(Xs) df(Xs) + [f(X), f(X)]t . (4.7)

By again using the fact that X is a Brownian motion on M , we also know that the process
N = (Nt)e>t≥0 given by

Nt = f(Xt)− f(X0)−
1

2

� t

0

ΔMf(Xs) ds

is a local martingale on R. Since the Itô integral preserves local martingales, it follows that

� t

0

f(Xs) dNs =

� t

0

f(Xs) df(Xs)−
1

2

� t

0

f(Xs)ΔMf(Xs) ds

is also a local martingale. Substituting this into Equation (4.7) yields that

f2(Xt)− f2(X0)−
� t

0

f(Xs)ΔMf(Xs) ds− [f(X), f(X)]t

is a local martingale on R. From (4.6) we therefore deduce that

� t

0

h(grad f, grad f)(Xs) ds− [f(X), f(X)]t
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is a local martingale. On the other hand, it is also a process of finite variation and hence, it must
be constant. As it takes the value zero at t = 0, it follows that

� t

0

h(grad f, grad f)(Xs) ds− [f(X), f(X)]t = 0 ,

which establishes (4.4). In particular, we are now able to apply Lemma 4.4. As before, we obtain
� t

0

∇2f(dXs, dXs) =

� t

0

ΔMf(Xs) ds

as well as Equality (4.5). Since X is a Brownian motion on M this implies that X is a martingale
on M . �
We observe the similarities between Lévy’s characterisation of Brownian motion and Proposi-
tion 4.5. Both criterions characterise Brownian motion as a (local) martingale with a certain
quadratic variation process.

4.1 Characterising Brownian motion using SDEs

In this section, we present the construction of Brownian motion which is due to Eells, Elworthy
and Malliavin, cf. Theorem 4.7. We use the same set-up as in Section 3.4.

To prove Theorem 4.7, we need the following lemma.

Lemma 4.6 If X is a semimartingale on a Riemannian manifold M and f ∈ C∞(M) then

f(Xt) = f(X0) +

d�

i=1

� t

0

Hif̃(Us) dW
i
s +

1

2

d�

i,j=1

� t

0

HiHj f̃(Us) d
�
W i,W j

�
s
,

where f̃ = f ◦ π : O(M) → R.

Proof. Using the chain rule for Stratonovich differentials, cf. Lemma 3.2, and the Relation (3.4) we
obtain

∂f̃(Ut) = (df̃)Ut(∂Ut) =

d�

i=1

(df̃)Ut (Hi(Ut)) ∂W
i
t .

By definition, it holds true that (df̃)Ut
(Hi(Ut)) = Hif̃(Ut) for all 1 ≤ i ≤ d, which implies

f̃(Ut)− f̃(U0) =

d�

i=1

� t

0

Hif̃(Us) ∂W
i
s .

Since π(Ut) = Xt, we have f̃(Ut) − f̃(U0) = f(Xt) − f(X0). Moreover, as W is a semimartingale
on Rd we can write the Stratonovich integral in terms of an Itô integral. This yields

f(Xt)− f(X0) =

d�

i=1

� t

0

Hif̃(Us) dW
i
s +

1

2

d�

i=1

�
Hif̃(U),W i

�
t
. (4.8)

By applying the chain rule for Stratonovich differentials to the function Hif̃ : O(M) → R we also
get

∂(Hif̃)(Ut) =
�
d(Hif̃)

�
Ut

(∂Ut) =

d�

j=1

�
d(Hif̃)

�
Ut

(Hj(Ut)) ∂W
j
t

=

d�

j=1

HjHif̃(Ut) ∂W
j
t
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for all 1 ≤ i ≤ d. Since the Itô and the Stratonovich integral only differ by a finite variation term,
we deduce that

�
Hif̃(U),W i

�
t
=

d�

j=1

��
HjHif̃(U) dW j ,W i

�

t

.

By the Kunita-Watanabe identity, see e.g. Rogers, Williams [16, IV. 28], it follows that

�
Hif̃(U),W i

�
t
=

d�

j=1

� t

0

HjHif̃(Us) d
�
W j ,W i

�
s
.

From (4.8) we then obtain

f(Xt) = f(X0) +

d�

i=1

� t

0

Hif̃(Us) dW
i
s +

1

2

d�

i,j=1

� t

0

HiHj f̃(Us) d
�
W i,W j

�
s
,

as claimed. �
For the most part, the proof of the next theorem follows Hsu [9, Chapter 3.2]. However, one
intermediate result is deduced differently as we have Lemma 4.4 and Proposition 4.5 available.

Theorem 4.7 Let M be a Riemannian manifold of dimension d and let X be a semimartingale
on M . Then X is a Brownian motion on M if and only if its anti-development W is a standard
Brownian motion on Rd.

Proof. For the ‘if’ direction, let f ∈ C∞(M) be arbitrary and set f̃ = f ◦ π. By assumption, W is
a standard Brownian motion on Rd and Lévy’s characterisation implies that

�
W i,W j

�
t
= tδij for

1 ≤ i, j ≤ d. From Lemma 4.6, it follows that

f(Xt) = f(X0) +

d�

i=1

� t

0

Hif̃(Us) dW
i
s +

1

2

d�

i=1

� t

0

H2
i f̃(Us) ds . (4.9)

In the last term, one recognises Bochner’s horizontal Laplacian

ΔO(M) =

d�

i=1

H2
i .

As proved in Hsu [9, Chapter 3.1], we have

ΔO(M)f̃(u) = ΔMf(πu) (4.10)

for any u ∈ O(M). Thus, Equation (4.9) implies that

f(Xt)− f(X0)−
1

2

� t

0

ΔMf(Xs) ds = f(Xt)− f(X0)−
1

2

d�

i=1

� t

0

H2
i f̃(Us) ds

=

d�

i=1

� t

0

Hif̃(Us) dW
i
s .

The latter is indeed a local martingale as W is a local martingale by Lévy’s characterisation. Hence,
X is a Brownian motion on M , as claimed.

It remains to prove the ‘only if’ direction. By the Nash embedding theorem, we may assume that the
Riemannian manifold M is isometrically embedded into Euclidean space RN for some N ∈ N. Let
{ηα}1≤α≤N be the standard basis of RN and let P1, P2, . . . , PN be the vector fields on M which one
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obtains by defining (Pα)x to be the orthogonal projection of ηα onto TxM . In the following, we use
the coordinate functions fα : M → R given by fα(x) = xα where x = (x1, x2, . . . , xN ) considered
as an element of RN . Set Xα

t = fα(Xt) and note that fα ∈ C∞(M) for each 1 ≤ α ≤ N . As we
assume that X is a Brownian motion, it follows that

Nα
t = Xα

t −Xα
0 − 1

2

� t

0

ΔMfα(Xs) ds (4.11)

is a local martingale. On the other hand, by applying Lemma 4.6 to the function fα we also obtain

Xα
t = Xα

0 +

d�

i=1

� t

0

Hif̃
α(Us) dW

i
s +

1

2

d�

i,j=1

� t

0

HiHj f̃
α(Us) d

�
W i,W j

�
s
. (4.12)

Furthermore, for any f ∈ C∞(M) it holds true that

d�

i,j=1

� t

0

HiHj f̃(Us) d
�
W i,W j

�
s
=

d�

i,j=1

� t

0

∇2f(Usei, Usej) d
�
W i,W j

�
s

=

� t

0

∇2f(dXs, dXs) ,

where {e1, e2, . . . , ed} is the standard basis of Rd. The result is a consequence of the facts
HiHj f̃(u) = ∇2f(uei, uej) for any f ∈ C∞(M), cf. Hsu [9, Chapter 2.2], and

� t

0

b(dXs, dXs) =

d�

i,j=1

� t

0

b(Usei, Usej) d
�
W i,W j

�
s

(4.13)

for any b ∈ Γ(T ∗M ⊗ T ∗M), see Emery [3, Lemma 8.25]. Moreover, since X is a Brownian motion
by assumption, we can use Proposition 4.5 and Lemma 4.4 to deduce that

� t

0

∇2f(dXs, dXs) =

� t

0

ΔMf(Xs) ds ,

for any f ∈ C∞(M). In particular, it follows that

d�

i,j=1

� t

0

HiHj f̃
α(Us) d

�
W i,W j

�
s
=

� t

0

ΔMfα(Xs) ds .

Substituting this into Equation (4.12) yields

Xα
t = Xα

0 +

d�

i=1

� t

0

Hif̃
α(Us) dW

i
s +

1

2

� t

0

ΔMfα(Xs) ds

and from (4.11) we then obtain

Nα
t =

d�

i=1

� t

0

Hif̃
α(Us) dW

i
s .

We claim that Hif̃
α(u) = �ηα, uei� for any u ∈ O(M), where �·, ·� denotes the Euclidean inner

product on RN . To prove the claim, we observe that if v∗ ∈ HuO(M) and v = (π∗)u(v∗) then

v∗f̃ = df̃(v∗) = d(f ◦ π)(v∗) = df ((π∗)u(v
∗)) = df(v) = h(grad f, v)
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for f ∈ C∞(M) and h the Riemannian metric on M . Since M is isometrically embedded into RN ,
we further have that h(grad f, v) = �grad f, v� and therefore,

v∗f̃ = �grad f, v� .

Applying this general result to the horizontal lift Hi(u) of uei to u and the function fα as well as
noting that grad fα = Pα yields Hif̃

α(u) = �Pα, uei�. The claimed result

Hif̃
α(u) = �ηα, uei�

follows because (Pα)πu is the orthogonal projection of ηα onto TπuM and uei ∈ TπuM . Multiplying

dNα
t =

d�

i=1

�ηα, Utei� dW i
t

by �ηα, Utej�, summing over α and using Parseval’s identity as well as the orthonormality of the
vectors Ute1, Ute2, . . . , Uted gives

N�

α=1

�ηα, Utej� dNα
t =

N�

α=1

d�

i=1

�ηα, Utej��ηα, Utei� dW i
t =

d�

i=1

�Utej , Utei� dW i
t = dW j

t .

Since W0 = 0, we have established that

W j
t =

N�

α=1

� t

0

�ηα, Usej� dNα
s . (4.14)

This implies that W is a local martingale on Rd as Nα is a local martingale on R for each α. In
the following, we compute the quadratic variation of W . For 1 ≤ α,β ≤ N , we deduce from (4.11)
that �

Nα, Nβ
�
t
=

�
Xα, Xβ

�
t

(4.15)

since
� t

0
ΔMfα(Xs) ds is a term of finite variation. Due to the integration by parts formula for

real-valued semimartingales we have

Xα
t X

β
t = Xα

0 X
β
0 +

� t

0

Xα
s dXβ

s +

� t

0

Xβ
s dXα

s +
�
Xα, Xβ

�
t
.

From (4.11), we also obtain dXα
t = dNα

t + 1
2ΔMfα(Xt) dt. Substituting this into the previous

formula yields

Xα
t X

β
t = Xα

0 X
β
0 +

� t

0

Xα
s dNβ

s +
1

2

� t

0

Xα
s ΔMfβ(Xs) ds

+

� t

0

Xβ
s dNα

s +
1

2

� t

0

Xβ
s ΔMfα(Xs) ds+

�
Xα, Xβ

�
t
. (4.16)

On the other hand, by considering the function fαβ = fαfβ : M → R and by using the assumption
that X is a Brownian motion, we know that

Nαβ
t = Xα

t X
β
t −Xα

0 X
β
0 − 1

2

� t

0

ΔMfαβ(Xs) ds

is a local martingale. Moreover, it holds true that

ΔMfαβ = ΔM

�
fαfβ

�
= (ΔMfα) fβ + fα

�
ΔMfβ

�
+ 2h

�
grad fα, grad fβ

�
.
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Since h
�
grad fα, grad fβ

�
= �Pα, Pβ� it follows that

Xα
t X

β
t = Xα

0 X
β
0 +Nαβ

t +
1

2

� t

0

Xα
s ΔMfβ(Xs) ds+

1

2

� t

0

Xβ
s ΔMfα(Xs) ds+

� t

0

�Pα, Pβ�(Xs) ds .

Comparing this with (4.16) gives

Nαβ
t −

� t

0

Xα
s dNβ

s −
� t

0

Xβ
s dNα

s =
�
Xα, Xβ

�
t
−
� t

0

�Pα, Pβ�(Xs) ds .

We note that the left-hand side is a local martingale, whereas the right-hand side is a finite variation
process starting from zero. Thus, we must have

�
Xα, Xβ

�
t
=

� t

0

�Pα, Pβ�(Xs) ds .

Using (4.14), the Kunita-Watanabe identity and (4.15), we further deduce that

d
�
W i,W j

�
t
=

N�

α,β=1

�ηα, Utei��ηβ , Utej�d
�
Nα, Nβ

�
t

=

N�

α,β=1

�ηα, Utei��ηβ , Utej��Pα, Pβ�(Xt) dt (4.17)

for 1 ≤ i, j ≤ d. If we now set Fi = Utei, one can write

(Pα)Xt
=

d�

i=1

�Fi, ηα�Fi

because {Fi}1≤i≤d is an orthonormal basis of TXt
M . Using this expression, we conclude

N�

α,β=1

�ηα, Fi��ηβ , Fj��Pα, Pβ�(Xt) =

N�

α,β=1

d�

k,l=1

�ηα, Fi��ηβ , Fj��Fk, ηα��Fl, ηβ��Fk, Fl�

=

d�

k,l=1

�Fi, Fk��Fj , Fl�δkl = δij ,

by Parseval’s identity. From (4.17) we then get

�
W i,W j

�
t
= tδij .

By Lévy’s characterisation and since W0 = 0 due to the definition of the anti-development, it
follows that W is indeed a standard Brownian motion on Rd. �

Remark 4.8 In Hsu [9, Chapter 2.4] Identity (4.13) is in fact used as the definition of the b-
quadratic variation of X. However, this definition is equivalent to the one we took from Emery [3,
Chapter 3].

Remark 4.9 Having established the characterisation of Brownian motion which uses stochastic
differential equations, one can prove the existence of Brownian motion on a Riemannian manifold
M up to explosion. We start with a standard Brownian motion W on Rd, which does exist, and
then solve the stochastic differential equation (3.4). By Theorem 3.3 we are guaranteed the existence
of a solution U on O(M) up to explosion. At the end, we project U onto M to obtain a Brownian
motion X on M .
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We can now give our first example of a Brownian motion on a non-trivial manifold.

Example 4.10 Let V = (Vt)t≥0 be a Brownian motion on R. We claim that X = (Xt)t≥0 given
by

Xt = eiVt

is a Brownian motion on S1. By Theorem 4.7, it suffices to show that the anti-development W of
X is a standard Brownian motion on R.
Let U0 be an F0-measurable random variable on O(S1) with π(U0) = X0. Since we have

O(S1) = S1 ×O(1) = S1 × {±1} ,

the random variable U0 must be of the form U0 = (X0, B) for a random variable B taking values
in {±1}. We observe that (Xt, B) is the only continuous semimartingale on O(S1) which lies above
X and starts from U0. As we are guaranteed the existence of a horizontal lift U = (Ut)t≥0 starting
from U0, it follows that

Ut = (Xt, B) . (4.18)

In general, one can think of an element (x,±1) ∈ O(S1) as the linear isometry from R to TxS
1

which sends 1 to ± ix. Furthermore, the structure group of O(S1) is G = {±1}. Since its associated
Lie algebra is g = {0}, any connection form on O(S1) must be identically zero. This implies that
HO(S1) = TO(S1), i.e. all tangent vectors are horizontal. We deduce that the horizontal vector
field H1 which corresponds to the basis element 1 of R is given by

H1 (x, ε) =

�
(ix, 0) if ε = 1

(− ix, 0) if ε = −1

for (x, ε) ∈ S1 × {±1} = O(S1). In particular, we obtain H1(Ut) = (iBXt, 0) = (iB eiVt , 0).
Moreover, from (4.18) and the chain rule for Stratonovich differentials, we also have

∂Ut = (∂Xt, 0) = (i eiVt ∂Vt, 0) .

Hence, ∂Ut = H1(Ut) ∂Wt yields

i eiVt ∂Vt = iB eiVt ∂Wt

which is equivalent to ∂Vt = B ∂Wt. Since we require W0 = 0 for the anti-development, it follows
that

Wt =
Vt − V0

B
.

Hereby, we can divide by B as it takes values in {±1} only. Furthermore, since U0 is F0-measurable
and as V = (Vt)t≥0 is a Brownian motion in the filtration (Ft)t≥0, the process V must be inde-
pendent of B. Thus, W is indeed a standard Brownian motion on R since V is a Brownian motion
on R. �

At the end of this section, we want to show that Proposition 1.5 is really just a special case of
Theorem 4.7. It suffices to prove the following, without making use of Theorem 4.7.

Proposition 4.11 A semimartingale X = (Xt)t≥0 on Rd is a Brownian motion on Rd if and only
if its anti-development W is a standard Brownian motion on Rd.

Proof. We certainly have
O(Rd) = Rd ×O(d) .

Furthermore, one can show that the decomposition

TuO(Rd) = TuRd ⊗ Tu O(d)
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which assigns TuRd ∼= Rd as the horizontal subspace to u ∈ O(Rd) yields the connection on O(Rd)
which corresponds to the Levi-Civita connection on Rd.

Similar to the previous example, any F0-measurable random variable U0 onO(Rd) with π(U0) = X0

is of the form U0 = (X0, B) for a random variable B taking values in O(d). We claim that the
horizontal lift U of X to O(Rd) starting from U0 is

Ut = (Xt, B) .

We certainly have π(U) = X. Therefore, it suffices to find a semimartingale W on Rd which
satisfies (3.4). We note that with respect to the specified connection, the horizontal vector fields
H1, H2, . . . , Hd are given by

Hi(u) = (Aei, 0) for u = (x,A) ,

where {ei}1≤i≤d is the standard basis of Rd. Thus, due to ∂Ut = (∂Xt, 0) the stochastic differential

equation ∂Ut =
�d

i=1 Hi(Ut) ∂W
i
t reads

(∂Xt, 0) =

d�

i=1

(Bei, 0) ∂W
i
t .

It follows that

∂Xt =

d�

i=1

Bei ∂W
i
t .

Hence, the anti-development W of X is given by

Wt = B−1(Xt −X0) . (4.19)

Note that B−1 is well-defined because B is a random variable on O(d). It particularly follows that
Ut = (Xt, B) is indeed the horizontal lift of X starting from (X0, B). Moreover, if W = (Wt)t≥0

is a standard Brownian motion on Rd in the filtration (Ft)t≥0 then B is independent of W . Thus,

as B takes values in O(d) only, Equation (4.19) implies that X is a Brownian motion on Rd. On
the other hand, if X = (Xt)t≥0 is a Brownian motion on Rd in the filtration (Ft)t≥0 then B is

independent of X and it follows that W is a standard Brownian motion on Rd. �

4.2 Discrete approximation of Brownian motion

In this section, we present a discrete approximation of Brownian motion on a Riemannian manifold.
This also gives us a better idea of how one could think about Brownian motion. For the most part,
we follow Feres [4, Chapter 8].

Let M be a d-dimensional Riemannian manifold. In this section only, we shall additionally assume
that M is compact. On the one hand, this guarantees the completeness of every horizontal vector
field on O(M) and on the other hand, this assumption ensures that stochastic processes on M and
on O(M) do not explode. To find a discrete approximation of Brownian motion on M , we first use
a standard Brownian motion W on Rd and the horizontal vector fields Hi to construct a discrete
approximation of its horizontal lift on O(M). Afterwards, we project this approximation onto M .

For a horizontal vector field H on O(M) let
�
ΦH

t

�
denote the flow of H, i.e. ΦH

t (u) is the unique
integral curve of H through u ∈ O(M). By our assumptions, this flow is defined for all times t.
Let x ∈ M be fixed and let U0 be a random variable taking values in O(M)x . For some fixed time

T > 0 and for each n ∈ N, we define a curve U (n) =
�
U

(n)
t

�
T≥t≥0

on O(M) in the following way.

Set U
(n)
0 = U0. We then use the horizontal vector field

Hn
t =

d�

i=1

�
W i

t −W i
k2−nT

�
Hi
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for t ∈ [k2−nT, (k + 1)2−nT ] and 0 ≤ k ≤ 2n − 1 to inductively construct

U
(n)
t = Φ

Hn
t

1

�
U

(n)
k2−nT

�
.

Note that this is consistent for t = k2−nT as Hn
t vanishes at t = k2−nT .

We are mainly interested in the projection X(n) =
�
X

(n)
t

�
T≥t≥0

given by X(n) = π
�
U (n)

�
. Using

the correspondence between the connection on O(M) and the Levi-Civita connection on M , one

can show that for t ∈ [k2−nT, (k+1)2−nT ] we reach X
(n)
t by walking a parameter distance 1 along

the geodesic through X
(n)
k2−nT with tangent vector

d�

i=1

�
W i

t −W i
k2−nT

�
U

(n)
k2−nT ei

at X
(n)
k2−nT .

The following theorem says that the sequence of processes
�
U (n)

�
n∈N has the desired limit, i.e. it

approximates the horizontal lift.

Theorem 4.12 Let M be a Riemannian manifold, let x ∈ M be fixed and let U0 be a random
variable on O(M)x . Then there exists a stochastic process U = (Ut)t≥0 on O(M) starting from
U0 such that for every T > 0 and every smooth function f ∈ C∞(O(M))

lim
n→∞

sup
t∈[0,T ]

���f
�
U

(n)
t

�
− f (Ut)

��� = 0 a.s. ,

where U (n) =
�
U

(n)
t

�
T≥t≥0

are the stochastic processes defined above. Moreover, for every smooth

function g ∈ C∞ ([0,∞)×O(M)) the stochastic process N = (Nt)t≥0 given by

Nt = g (t, Ut)− g (0, U0)−
� t

0

�
∂

∂s
+

1

2
ΔO(M)

�
g (s, Us) ds

is a local martingale on R.

A proof of a more general version of this theorem is included in Feres [4, Chapter 8].

LetX = (Xt)t≥0 be the stochastic process onM given byX = π (U). For an arbitrary f ∈ C∞(M),
we consider the function g ∈ C∞ ([0,∞)×O(M)) which is defined by g(t, u) = (f ◦π)(u). Applying
the second part of Theorem 4.12 to g shows that

f(Xt)− f(X0)−
1

2

� t

0

ΔO(M)(f ◦ π) (Us) ds

is a local martingale. Using (4.10), we deduce that

f(Xt)− f(X0)−
1

2

� t

0

ΔMf(Xs) ds

is a local martingale on R. Hence, X is a Brownian motion on the Riemannian manifold M and�
X(n)

�
n∈N is indeed a sequence approximating Brownian motion on M .

The constructions we presented in the last two sections are generally known as ‘rolling without
slipping’. They also provide an intuitive picture of how to obtain Brownian motion on a Riemannian
manifold, see e.g. Rogers, Williams [16, V. 33]. We think of the d-dimensional Riemannian manifold
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M as embedded into RN for some N ∈ N. To construct Brownian motion on M starting at x we
first construct a standard Brownian motion on L ∼= Rd and place L tangential to M at x such
that the origin of L coincides with x. We then roll L without slipping on M such that at time t
the point Wt ∈ L is in contact with M . The corresponding points (Xt)t≥0 on M form a Brownian
motion X on M . Moreover, if we mark coordinate axes on L, then at each point Xt these axes
provide a choice of an orthonormal basis for the tangent space TXtM . This corresponds to the
horizontal lift U of X to the orthonormal frame bundle O(M).

Remark 4.13 It is possible to define the concept of a random walk on a Riemannian manifold.
As in the Euclidean case, one can then construct Brownian motion as the limit of a sequence of
random walks. An exposition of this idea can be found in Jørgensen [10].

4.3 Characterising Brownian motion via the heat equation

As before, let M be a d-dimensional Riemannian manifold. Moreover, let X = (Xt)e>t≥0 be a
Brownian motion on M starting at X0 = x and let Px denote its law. In this section, we aim to
find the transition density function of X, i.e. we want to find a non-negative function pM (t, x, y)
defined on (0,∞)×M ×M satisfying

Px(Xt ∈ C, t < e) =

�

C

pM (t, x, y) dy

for t > 0 and any Borel subset C of M , cf. Proposition 4.18. Note that the integral is understood
to be with respect to the Riemannian volume measure.

To find such a function, we follow the approach presented in Hsu [9, Chapter 4.1]. In the following,
let LM denote the heat operator on M . It is applied to functions g ∈ C1,2 ((0,∞)×M) and is
defined by

LM =
∂

∂t
− 1

2
ΔM .

Thereby, ∂
∂t is applied to the time coordinate of g and ΔM to its spatial coordinates.

Theorem 4.14 Let M be a Riemannian manifold and let D ⊂ M be a relatively compact domain
with smooth boundary ∂D. There exists a unique continuous function pD(t, x, y) defined on (0,∞)×
D ×D satisfying the following conditions.

(i) pD(t, x, y) is strictly positive and infinitely differentiable on (0,∞)×D ×D.

(ii) For every fixed y ∈ D, the function q(t, x) = pD(t, x, y) on (0,∞) × D is a solution of the
heat equation, i.e.

LMq(t, x) = 0 for all (t, x) ∈ (0,∞)×D .

(iii) For every bounded continuous function f on D and every y ∈ D it holds true that

lim
t↓0

�

D

pD(t, x, y)f(x) dx = f(y) .

(iv) For every y ∈ ∂D we have pD(t, x, y) = 0 for all (t, x) ∈ (0,∞)×D.

(v) The function is symmetric in its last two arguments, i.e. pD(t, x, y) = pD(t, y, x).

(vi) For any x, y ∈ D and t, s > 0 the Chapman-Kolmogorov equation

pD(t+ s, x, y) =

�

D

pD(t, x, z)pD(s, z, y) dz

holds true.
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(vii) For every fixed pair (t, x) ∈ (0,∞)×D we have
�
D
pD(t, x, y) dy ≤ 1. This inequality is strict

if M \D �= ∅.

We omit the proof here as it does not use any techniques which are of further interest to this essay.
For more details, we refer to Grigor’yan [6, Chapter 7 and 8].

Since we would like to consider pD(t, x, y) as a function on (0,∞) × M × M , we agree to set
pD(t, x, y) = 0 if x ∈ M \D or y ∈ M \D. In particular, with that convention, we have

�

D

pD(t, x, y)f(y) dy =

�

M

pD(t, x, y)f(y) dy

for any continuous function f on M .

The next lemma, which is needed later, is a consequence of the preceding theorem.

Lemma 4.15 Let D ⊂ M be a relatively compact domain with smooth boundary and let f be a
continuous function on M . Then

u(t, x) =

�

M

pD(t, x, y)f(y) dy (4.20)

defined on (0,∞)×D satisfies the heat equation

LMu(t, x) = 0 for all (t, x) ∈ (0,∞)×D ,

the boundary condition u(t, x) = 0 for t > 0 and x ∈ ∂D as well as the initial condition

lim
t↓0

u(t, x) = f(x) for all x ∈ D .

Sketch of proof. The function defined in (4.20) has the claimed boundary condition by Theo-
rem 4.14 (iv) and (v) as well as the claimed initial condition by Theorem 4.14 (iii) and (v).

To prove that u solves the heat equation, one first has to argue that one can interchange the heat
operator LM and the integral to obtain

LMu(t, x) =

�

M

LMpD(t, x, y)f(y) dy .

Since it also holds true that
�

M

LMpD(t, x, y)f(y) dy =

�

D

LMpD(t, x, y)f(y) dy

the desired result then follows by Theorem 4.14 (ii). �
In fact, (4.20) is even the unique solution to the initial-boundary value problem given in
Lemma 4.15, cf. Hsu [9, Chapter 4.1].

The following lemma, see e.g. Stroock, Varadhan [17, Theorem 4.2.1], is also needed to prove the
next proposition.

Lemma 4.16 Let X = (Xt)e>t≥0 be a Brownian motion on a Riemannian manifold M and let
g ∈ C∞ ([0,∞)×M). Then

g(t,Xt)− g(0, X0)−
� t

0

�
∂

∂s
+

1

2
ΔM

�
g(s,Xs) ds

is a local martingale on R.
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Proof. Let N = (Nt)e>t≥0 be the stochastic process given by

Nt = g(0, Xt)− g(0, X0)−
1

2

� t

0

ΔMg(0, Xr) dr .

Since X is a Brownian motion on M and as g(0, ·) ∈ C∞(M), it follows that N is a local martingale
on R. Moreover, we deduce that

g(t,Xt)− g(0, X0) = g(t,Xt)− g(0, Xt) + g(0, Xt)− g(0, X0)

=

� t

0

�
∂g

∂s

�
(s,Xt) ds+

1

2

� t

0

ΔMg(0, Xr) dr +Nt

=

� t

0

�
∂

∂s
+

1

2
ΔM

�
g(s,Xs) ds+Nt

+

� t

0

�
∂g

∂s

�
(s,Xt) ds−

� t

0

�
∂g

∂s

�
(s,Xs) ds

+
1

2

� t

0

ΔMg(0, Xr) dr −
1

2

� t

0

ΔMg(r,Xr) dr .

For each s ≥ 0, we set

�Nt(s) =

�
∂g

∂s

�
(s,Xt)−

�
∂g

∂s

�
(s,X0)−

1

2

� t

0

ΔM

�
∂g

∂s

�
(s,Xr) dr (4.21)

and observe that �N(s) is a local martingale because (∂g/∂s)(s, ·) ∈ C∞(M). We also note that

�Nt(s)− �Ns(s) =

�
∂g

∂s

�
(s,Xt)−

�
∂g

∂s

�
(s,Xs)−

1

2

� t

s

ΔM

�
∂g

∂s

�
(s,Xr) dr .

Furthermore, we can write

ΔMg(0, Xr)−ΔMg(r,Xr) = −
� r

0

�
∂

∂s

�
ΔMg(s,Xr) ds .

Putting these expressions into the previously established identity yields

g(t,Xt)− g(0, X0) =

� t

0

�
∂

∂s
+

1

2
ΔM

�
g(s,Xs) ds+Nt

+
1

2

� t

0

� t

s

ΔM

�
∂g

∂s

�
(s,Xr) dr ds+

� t

0

�
�Nt(s)− �Ns(s)

�
ds

− 1

2

� t

0

� r

0

�
∂

∂s

�
ΔMg(s,Xr) ds dr .

The two double integrals cancel each other because ΔM (∂g/∂s) = (∂/∂s)ΔMg and in both cases
the region of integration is 0 ≤ s ≤ r ≤ t. To establish the desired conclusion, it remains to prove
that � t

0

�
�Nt(s)− �Ns(s)

�
ds (4.22)

is also local martingale. By using the Riemannian metric h on M , we can define the distance d(x, y)
between two point x, y ∈ M . If

sup
e>t≥0

d(X0, Xt)
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is a.s. bounded, let
�
�Tn

�
n∈N

be a sequence of stopping times increasing to the explosion time and

otherwise, let
�Tn = inf{t ≥ 0: d(X0, Xt) > n} .

We then define Tn = n ∧ �Tn and note that (Tn)n∈N is a sequence of stopping times increasing to
the explosion time. Moreover, we claim that for every s ∈ [0, e) the sequence (Tn)n∈N reduces the

local martingale �N(s). Indeed, by definition there exists a sequence of stopping times (Sm)m∈N
increasing to the explosion time e such that �N(s)Sm is a martingale for each m ∈ N. This implies
that �

�N(s)Sm

�Tn

is a martingale for each n,m ∈ N. Furthermore, by examining (4.21) we observe that �N(s)Tn is
bounded. Thus, by the dominated convergence theorem, we have

E
�
�Nt1∧Tn(s)

���Ft2

�
= E

�
lim

m→∞
�Nt1∧Tn∧Sm(s)

���Ft2

�

= lim
m→∞

E
�
�Nt1∧Tn∧Sm(s)

���Ft2

�

= lim
m→∞

�Nt2∧Tn∧Sm
(s) = �Nt2∧Tn

(s)

for e > t1 > t2 ≥ 0. Due to Tn ≤ n and from (4.21), we also obtain that

sup
0≤s,t≤Tn

�Nt(s) < ∞

for any n ∈ N. Hence, we can use Fubini’s Theorem to argue that for e > t1 > t2 ≥ 0 and n ∈ N

E

�� t1∧Tn

0

�
�Nt1∧Tn

(s)− �Ns(s)
�
ds

�����Ft2

�
=

� t1∧Tn

0

E
�
�Nt1∧Tn

(s)− �Ns∧Tn
(s)

���Ft2

�
ds .

Since

E
�
�Ns∧Tn

(s)
���Ft2

�
=

�
�Nt2∧Tn(s) if s > t2
�Ns∧Tn

(s) if s ≤ t2

it follows that
� t1∧Tn

0

E
�
�Nt1∧Tn

(s)− �Ns∧Tn
(s)

���Ft2

�
ds =

� t1∧Tn

0

�Nt2∧Tn
(s) ds−

� t2∧Tn

0

�Ns∧Tn
(s) ds

−
� t1∧Tn

t2∧Tn

�Nt2∧Tn
(s) ds

=

� t2∧Tn

0

�
�Nt2∧Tn(s)− �Ns(s)

�
ds .

Thus, (Tn)n∈N reduces the expression given in (4.22) which implies that the latter is indeed a local
martingale. �
For an open subset U ⊂ M , let

τU = inf{t < e : Xt �∈ U}
be the first exit time from U , where we agree to set τU = e if {t < e : Xt �∈ U} is empty. We note
that the random time τU is a stopping time because M \ U is closed.

The following proposition says that pD(t, x, y) is the transition density function of Brownian motion
on M which starts at x ∈ D and gets killed at the boundary of D. For the proof, we use the ideas
given in Hsu [9, Chapter 4.1] and add in the details, such as the previous lemma.
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Proposition 4.17 Let M be a Riemannian manifold and let D ⊂ M be a relatively compact
domain with smooth boundary. If X is a Brownian motion on M starting at x ∈ D then

Px(Xt ∈ C, t < τD) =

�

C

pD(t, x, y) dy

for t > 0 and any Borel subset C of M .

Proof. Let f be a continuous function on M and consider the function u(s, y) on (0,∞)×M defined
by

u(s, y) =

�

M

pD(s, y, z)f(z) dz .

For a fixed t ∈ (0,∞), let v(s, y) be the function on [0, t)×M given by

v(s, y) = u(t− s, y) .

The restriction s < t ensures that u(t − s, y) is well-defined. We note that v is continuous on
[0, t) × M and smooth on [0, t) × D. Therefore, by Lemma 4.16, the process N = (Ns)t∧τD>s≥0

given by

Ns = v(s,Xs)− v(0, X0)−
� s

0

�
∂

∂r
+

1

2
ΔM

�
v(r,Xr) dr

is a local martingale on R. Furthermore, we also have

−
�

∂

∂r
+

1

2
ΔM

�
v(r,Xr) = LMu(t− r,Xr) .

By Lemma 4.15, we know that LMu(t−r,Xr) = 0 as long asXr ∈ D. Since we assume s ∈ [0, t∧τD)
it follows that

Ns = v(s,Xs)− v(0, X0) = u(t− s,Xs)− u(t, x) .

As f is continuous, it is bounded on the compact set D. Thus, since pD(s, y, z) = 0 if y ∈ M \D
or z ∈ M \D and due to Theorem 4.14 (vii) the functions u and v are bounded. In particular, this
implies that N is a true martingale. As N0 = 0, we further deduce that Ex[Ns] = 0, i.e.

Exu(t− s,Xs) = u(t, x) (4.23)

for 0 ≤ s < t ∧ τD. For a fixed t0 < t, we note that

u(t− s,Xs) → u(t− t0 ∧ τD, Xt0∧τD ) as s ↑ t0 ∧ τD

by the continuity of u on (0,∞)×D and since X has continuous sample paths. Using the dominated
convergence theorem and (4.23), it follows that

Exu(t− t0 ∧ τD, Xt0∧τD ) = u(t, x) .

On the other hand, since u(s, y) = 0 if y ∈ ∂D and as XτD ∈ ∂D, we also have

u(t− t0 ∧ τD, Xt0∧τD ) =

�
u(t− t0, Xt0) if τD > t0

0 if τD ≤ t0 ,

which implies

u(t, x) = Exu(t− t0 ∧ τD, Xt0∧τD ) = Ex

�
u(t− t0, Xt0)�{t0<τD}

�
. (4.24)

Let us now consider a sequence (tn)n∈N ⊂ [0, t) strictly increasing to t. From Lemma 4.15 we know
that for y ∈ D the function u(s, y) satisfies the initial condition

lim
s↓0

u(s, y) = f(y) .
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Using the fact that D is relatively compact, one then argues that u(t− tn, Xtn)�{tn<τD} tends to
f(Xt)�{t<τD} pointwise as n → ∞. Furthermore, due to the boundedness of u, we can apply the
dominated convergence theorem to deduce that

Ex

�
u(t− tn, Xtn)�{tn<τD}

�
→ Ex

�
f(Xt)�{t<τD}

�
as n → ∞ .

Since t0 < t was arbitrary in (4.24), it follows that

Ex

�
f(Xt)�{t<τD}

�
= u(t, x) =

�

M

pD(t, x, z)f(z) dz . (4.25)

Finally, let C ⊂ M be a Borel subset. One can find an increasing sequence of continuous functions
(fn)n∈N on M such that for almost every x ∈ M the values fn(x) tend to �C(x) as n → ∞. Using
(4.25) and the monotone convergence theorem, we obtain

Px(Xt ∈ C, t < τD) = Ex

�
�C(Xt)�{t<τD}

�
=

�

M

pD(t, x, z)�C(z) dz =

�

C

pD(t, x, z) dz ,

as claimed. �
To extend this result to M , we consider a sequence (Dn)n∈N of relatively compact domains with
smooth boundary and such that

(i) Dn ⊂ Dn+1 for all n ∈ N and

(ii)
�

n∈N Dn = M .

One can show that such a sequence always exists. We refer to (Dn)n∈N as an exhaustion sequence
of M .

Let X be a Brownian motion starting at x ∈ Dn. From Proposition 4.17, we deduce that for any
Borel set C ⊂ M and for t > 0

�

C

�
pDn+1

(t, x, y)− pDn
(t, x, y)

�
dy = Px(Xt ∈ C, τDn

≤ t < τDn+1
) ≥ 0 .

Since we also have pDn(t, x, y) = 0 for x ∈ M \Dn the non-negativity of pDn+1(t, x, y) implies that

pDn+1
(t, x, y) ≥ pDn

(t, x, y)

holds true everywhere. Thus, we can define

pM (t, x, y) = lim
n→∞

pDn
(t, x, y) . (4.26)

The next proposition shows that pM (t, x, y) is the transition density function of Brownian motion
on M starting at x.

Proposition 4.18 Let M be a Riemannian manifold. If X = (Xt)e>t≥0 is a Brownian motion on
M starting at x ∈ M then

Px(Xt ∈ C, t < e) =

�

C

pM (t, x, y) dy

for t > 0 and any Borel subset C of M .

Proof. Let C ⊂ M be an arbitrary Borel set and let t > 0. Due to the properties of the exhaustion
sequence (Dn)n∈N, there exists some N ∈ N such that x ∈ Dn for all n ≥ N . By Proposition 4.17,
it then holds true that

Px(Xt ∈ C, t < τDn
) =

�

C

pDn
(t, x, y) dy (4.27)
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for all n ≥ N . Since pDn(t, x, y) ↑ pM (t, x, y) as n → ∞ the monotone convergence theorem implies

lim
n→∞

�

C

pDn(t, x, y) dy =

�

C

pM (t, x, y) dy .

Moreover, we note that τDn
↑ e as n → ∞. By again applying the monotone convergence theorem,

we obtain
lim

n→∞
Px (Xt ∈ C, t < τDn) = Px (Xt ∈ C, t < e) .

Thus, the desired result follows by letting n tend to +∞ in (4.27). �
From Proposition 4.18, we also deduce that pM (t, x, y) is independent of the choice of the exhaustion
sequence (Dn)n∈N. In fact, pM (t, x, y) is the minimal heat kernel of M . This is a consequence of
the next two theorems, both of which are taken from Hsu [9, Chapter 4.1]. In Theorem 4.19, one
finds the main properties of pM (t, x, y), most of which follow from Theorem 4.14 and (4.26).

Theorem 4.19 Let M be a Riemannian manifold. The function pM (t, x, y) satisfies the following
conditions.

(i) pM (t, x, y) is strictly positive and infinitely differentiable on (0,∞)×M ×M .

(ii) For every fixed y ∈ M , the function q(t, x) = pM (t, x, y) on (0,∞) ×M is a solution of the
heat equation, i.e.

LMq(t, x) = 0 for all (t, x) ∈ (0,∞)×M .

(iii) For every bounded continuous function f on M and every y ∈ M it holds true that

lim
t↓0

�

M

pM (t, x, y)f(x) dx = f(y) .

(iv) The function is symmetric in its last two arguments, i.e. pM (t, x, y) = pM (t, y, x).

(v) For any x, y ∈ M and t, s > 0, the Chapman-Kolmogorov equation

pM (t+ s, x, y) =

�

M

pM (t, x, z)pM (s, z, y) dz

holds true.

(vi) For every fixed pair (t, x) ∈ (0,∞)×M we have
�
M

pM (t, x, y) dy ≤ 1.

The final theorem establishes a minimality property of pM (t, x, y). Even though we do not need
this property in later parts of the essay, we state it here for the record.

Theorem 4.20 If p(t, x, y) is a function satisfying the conditions (i) to (iii) of the previous theorem
then pM (t, x, y) ≤ p(t, x, y) for all t ∈ (0,∞) and x, y ∈ M .

A proof is given in Hsu [9, Chapter 4.1].
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5 Recurrence and transience

Having established various characterisations of Brownian motion, we want to conclude the essay by
analysing the recurrence and transience behaviour of Brownian motion on a Riemannian manifold.
We start by giving the formal definitions of these two concepts and then check that Brownian
motion is indeed either recurrent or transient. Afterwards, we find criterions which are equivalent
to the transience of Brownian motion. We finish off by considering some Riemannian manifolds for
which one can explicitly determine whether Brownian motion on them is recurrent or transient.

Throughout this chapter, we assume that the stochastic process X = (Xt)e>t≥0 defined on the
filtered probability space (Ω,F , (Ft)t≥0 ,P) is a Brownian motion on the Riemannian manifold M
and in the filtration (Ft)t≥0 . We denote its starting point by x and its law by Px.

5.1 Definitions and basic properties

The main ideas are taken from Hsu [9, Chapter 4.4]. However, I modified a few details to ensure
that the arguments presented do actually work.

We observe that for a fixed ω ∈ Ω, one obtains a path X(ω) on M defined by X(ω) =
(Xt(ω))e(ω)>t≥0 .

Definition 5.1 Let C be a Borel subset of M and let ω ∈ Ω be fixed. We say that C is recurrent
for the path X(ω) if there exists a strictly increasing sequence (tn)n∈N ⊂ [0, e(ω)) such that

lim
n→∞

tn = e(ω) and Xtn(ω) ∈ C for all n ∈ N .

Otherwise, i.e. if there exists some T ∈ [0, e(ω)) such that Xt(ω) �∈ C for all t ≥ T , we say that C
is transient for X(ω).

Definition 5.2 A Borel subset C of M is called recurrent if for all x ∈ M we have

Px ({X(ω) : C is recurrent for X(ω)}) = 1 ,

whereas it is called transient if for all x ∈ M

Px ({X(ω) : C is transient for X(ω)}) = 1 .

For a fixed ω ∈ Ω, Definition 5.1 ensures that a given Borel set C ⊂ M is either recurrent or
transient for X(ω). Thus,

Px ({X(ω) : C is recurrent for X(ω)}) = 1− Px ({X(ω) : C is transient for X(ω)}) (5.1)

and it follows that C cannot be both recurrent and transient.

Definition 5.3 We say that Brownian motion on M is recurrent if every non-empty open subset
of M is recurrent. Similarly, we call Brownian motion on M transient if every compact subset of
M is transient.

For the latter definition note that the empty set is always transient.

We would like to have the property that Brownian motion on M is neither recurrent and transient
at the same time nor that it has none of these two features, cf. Corollary 5.5. However, this does
not immediately follow from the last definition and we need to prove a series of lemmas to show
that it is indeed the case.

In contrast to Hsu [9, Chapter 4.4], let K (M) be the set of all non-empty, compact and connected
subsets of M which have a smooth boundary and a non-empty interior. The next proposition
establishes that either all sets in K (M) are recurrent or all sets in K (M) are transient.
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Proposition 5.4 A subset K ∈ K (M) is either recurrent or transient. Moreover, if there exists
some L ∈ K (M) which is recurrent then any K ∈ K (M) is recurrent.

We claim this proposition implies that Brownian motion on M enjoys the desired property. In fact,
the following corollary is not explicitly stated or proved in Hsu [9]. However, one can deduce it
from Proposition 5.4.

Corollary 5.5 Brownian motion on M is either recurrent or transient.

Proof. Let C1, C2 be subsets of M satisfying C1 ⊂ C2. We observe that C1 being recurrent implies
the recurrence of C2 whereas C2 being transient implies the transience of C1. The reason for this
is that any path which hits C1 has to meet C2 at the same time, whereas any path which never
comes back to C2 can also never re-enter C1.

Assume Brownian motion on M is not recurrent. By Definition 5.3, there exists a non-empty open
subset U ⊂ M which is not recurrent. Taking the closure of a geodesic ball with small radius and
which lies inside U , one obtains a set K0 ∈ K (M) satisfying K0 ⊂ U . Hereby, we used the fact
that a geodesic ball with small enough radius has a smooth boundary. Since U is not recurrent
the set K0 cannot be recurrent by our first observation. From Proposition 5.4, we deduce that
every set contained in K (M) must be transient. Let L be a compact subset of M . One can find
some K1 ∈ K (M) with L ⊂ K1. Since K1 is transient, the set L must be transient as well. As L
was an arbitrary compact subset, it follows that Brownian motion on M is transient. Hence, we
established that Brownian motion on M not being recurrent implies that it is transient.

Conversely, suppose that Brownian motion on M is transient. By definition, this means that every
compact subset of M is transient. In particular, any set contained in K (M) must be transient.
Let U be a geodesic ball in M . Provided U has a small enough radius, we have K = U ∈ K (M).
As K is transient, U must be transient as well. By Equation (5.1), this implies that U cannot be
recurrent. Since U is also a non-empty open subset of M , it follows that Brownian motion on M
cannot be recurrent.

Thus, we have established that Brownian motion on M is transient if and only if it is not recurrent.
This gives the desired result. �

The rest of this section is devoted to proving Proposition 5.4.

Let D be an open subset of M and let K be a closed subset. The first exit time τD from D and
the first hitting time TK of K are defined by

τD = inf{t < e : Xt �∈ D} , and

TK = inf{t < e : Xt ∈ K} ,

where we agree to set inf ∅ = e. We note that τD and TK are stopping times because both K and
M \D are closed subsets of M .

The next lemma states that Brownian motion on M almost surely leaves a relatively compact and
non-dense domain D with smooth boundary in finite time.

Lemma 5.6 Let D ⊂ M be a relatively compact domain with smooth boundary and such that
M \D �= ∅. It holds true that

sup
x∈D

ExτD < ∞ .

Proof. Let x ∈ D be arbitrary. From Proposition 4.17 we recall the identity

Px(Xt ∈ C, t < τD) =

�

C

pD(t, x, y) dy , (5.2)
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for t > 0 and any Borel subset C of M . Let α ∈ R be given by

α = sup
z∈D

�

D

pD(1, z, y) dy .

Using (5.2) we deduce

Px(τD > 1) = Px(X1 ∈ D, 1 < τD) =

�

D

pD(1, x, y) dy ≤ α . (5.3)

From Theorem 4.14 (iv) and (v) it follows that
�
D
pD(t, z, y) dy = 0 for all z ∈ ∂D and t > 0.

Moreoever,
�
D
pD(1, z, y) dy is continuous on D. Thus, since M \D �= ∅ by assumption and as D

is compact, Theorem 4.14 (vii) implies that

α = sup
z∈D

�

D

pD(1, z, y) dy < 1 .

Using the Chapman-Kolmogorov equation, cf. Theorem 4.14 (vi), one further obtains that for n ∈ N
with n ≥ 2

Px(τD > n) =

�

D

pD(n, x, y) dy =

�

D

��

D

pD(n− 1, x, z)pD(1, z, y) dz

�
dy

=

�

D

pD(n− 1, x, z)

��

D

pD(1, z, y) dy

�
dz

≤ α

�

D

pD(n− 1, x, z) dz = α Px(τD > n− 1) .

We were allowed to interchange the order of integration since pD(t, x, y) is non-negative everywhere
so that Fubini’s theorem applies. From (5.3) it then follows by induction that for n ∈ N

Px(τD > n) ≤ αn .

Since it certainly holds true that Px(τD > 0) ≤ 1, we deduce

ExτD ≤
∞�

n=0

Px(τD > n) ≤
∞�

n=0

αn .

Finally, α < 1 implies that

sup
x∈D

ExτD ≤
∞�

n=0

αn =
1

1− α
< ∞ ,

as claimed. �
Let D ⊂ M be a relatively compact domain with smooth boundary ∂D and let f be a continuous
function on ∂D. From Hörmander [8, Chapter 20] we recall that there exists a unique function
u ∈ C2(D) ∩ C

�
D
�
solving the Dirichlet problem ΔMu(x) = 0 for all x ∈ D and u(x) = f(x) for

all x ∈ ∂D. The uniqueness of this solution follows from the maximum principle. In fact, we have
the following result.

Lemma 5.7 Let D and f be as above with the additional assumption that M \D �= ∅. The unique
solution u of the corresponding Dirichlet problem is given by

u(x) = Exf (XτD ) ,

where X is a Brownian motion on M starting at x ∈ D.
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Proof. If x ∈ ∂D then τD = 0 and Exf(XτD ) = Exf(X0) = f(x) = u(x), as claimed.

Otherwise, we have x ∈ D. Let t > 0 be fixed. We observe that Xr ∈ D for all r ∈ [0, t ∧ τD) and
therefore, ΔMu(Xr) = 0. By examining the proof of Theorem 4.7, we note it also establishes that
X being a Brownian motion on M implies that

f(Xs)− f(X0)−
1

2

� s

0

ΔMf(Xr) dr

is a local martingale for every twice-continuously differentiable function f ∈ C2(M). In particular,
since u ∈ C2(D) the stochastic process N = (Ns)t∧τD>s≥0 given by

Ns = u(Xs)− u(X0)−
1

2

� s

0

ΔMu(Xr) dr = u(Xs)− u(x)

is a local martingale on R. Moreover, umust be bounded as it is a continuous function on a compact
set. It follows that N is a true martingale. Furthermore, we claim that (Ns)t∧τD≥s≥0 with

Nt∧τD = lim
s↑t∧τD

(u(Xs)− u(x)) = u(Xt∧τD )− u(x)

is also a true martingale. Indeed, by using the boundedness of u and the dominated convergence
theorem, we deduce that

Ex[Nt∧τD |Fs] = Ex

�
lim

r↑t∧τD,r≥s
Nr

����Fs

�
= lim

r↑t∧τD,r≥s
Ex[Nr|Fs] = Ns

for 0 ≤ s < t ∧ τD. Since N0 = 0, we obtain Ex [Nt∧τD ] = 0 which yields

u(x) = Exu(Xt∧τD ) .

From Lemma 5.6 we also know that Px(τD < ∞) = 1. Therefore, by letting t tend to +∞ and by
using the dominated convergence theorem once again, we conclude

u(x) = Exu (XτD ) = Exf (XτD ) ,

as claimed. �
For K ∈ K (M), let hK be the function on M defined by hK(x) = Px(TK < e). We call hK the
hitting probability of the set K. It certainly holds true that hK(x) = 1 for all x ∈ K. Further
properties of the hitting probability are established below.

Lemma 5.8 For K ∈ K (M), the hitting probability hK is harmonic on M \K, i.e. ΔMhK ≡ 0
on M \K, and continuous on M \K.

Proof. To prove harmonicity of hK on M \ K, let us consider some arbitrary x ∈ M \ K. Since
M \ K is open, we can find a geodesic ball B centred at x such that B ⊂ M \ K. Moreover, by
choosing the radius of B small enough we can ensure that its boundary is smooth. As before, let
τB denote the first exit time from B. By construction, we have τB < TK . In particular, on the
event {TK < e} we also have τB < e. Applying the strong Markov property at the stopping time
τB , we then deduce

hK(x) = Px(TK < e) = Ex

�
�{TK<e}

�
= Ex

�
Ex

�
�{TK<e}

��FτB

��

= Ex

�
EXτB

�
�{TK<e}

��

= Ex

�
PXτB

(TK < e)
�

= ExhK (XτB ) .
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In Hsu [9, Proof of Proposition 4.4.4], it is stated that this and Lemma 5.7 imply that hK is the
solution of a Dirichlet problem on B. However, I was not able to work out how one could apply
Lemma 5.7 as we do not yet know that hK is continuous on ∂B. If it was, we could argue in a way
similar to the one below. On the other hand, if hK is indeed the solution of a Dirichlet problem on
B then this yields the harmonicity of hK on M \K as x ∈ M \K was arbitrary. In the following,
we shall assume that hK is harmonic on M \K and present the rest of the proof given in Hsu [9,
Chapter 4.4].

If hK is harmonic on M \ K then we also know that hK is continuous on M \ K. Therefore, it
remains to establish the continuity of hK at the boundary of M \K. Let (Dn)n∈N be an exhaustion
sequence of M with the additional property that K ⊂ Dn for every n ∈ N. For each n ∈ N, one
defines a function un on Dn \K by

un(x) = Px(TK < τDn) .

Since K is particularly closed, we have ∂K ⊂ K, whereas Dn being open implies ∂Dn �⊂ Dn.
Hence, it holds true that

un(x) =

�
0 if x ∈ ∂Dn ,

1 if x ∈ ∂K .
(5.4)

We note that τDn ∧ TK = τDn\K . Since K ∈ K (M) has non-empty interior, we also have

M \
�
Dn \K

�
�= ∅ .

Thus, from Lemma 5.6 we obtain Px (τDn ∧ TK < ∞) = 1. Therefore, we can apply the strong
Markov property at the finite stopping time τDn ∧ TK to deduce that

un(x) = Px(TK < τDn
) = Ex

�
PXτDn

∧TK
(TK < τDn)

�
= Exun

�
XτDn∧TK

�
. (5.5)

On each connected component of Dn\K, we now consider the Dirichlet problem with the boundary
condition given by

f(x) =

�
0 if x ∈ ∂Dn ,

1 if x ∈ ∂K .

Since M \
�
Dn \K

�
�= ∅ and as f is continuous, it follows by Lemma 5.7 and (5.4) as well as (5.5)

that the unique solution to this Dirichlet problem is

Exf
�
XτDn\K

�
= Exun

�
XτDn∧TK

�
= un(x) .

In particular, un must be continuous on Dn \K. By setting un(x) = 0 whenever x ∈ M \Dn we
extend un to a continuous function on M \K. Since Dn ⊂ Dn+1 for each n ∈ N and ∪n∈NDn = M ,
we further conclude that (un)n∈N is an increasing sequence with limit hK restricted toM \K. Thus,
hK is lower semicontinuous on M \K. Therefore, for any x ∈ ∂K, we have

lim inf
y→x,y∈M\K

hK(y) ≥ hK(x) = 1 .

Since it also holds true that hK(y) ≤ 1 for all y ∈ M , we obtain

lim
y→x,y∈M\K

hK(y) = hK(x) ,

which establishes the continuity of hK at the boundary of M \K. �
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Corollary 5.9 For any K ∈ K (M) we have either hK ≡ 1 on M or K �= M and 0 < hK(x) < 1
for all x ∈ M \K.

Proof. If K = M it is certainly the case that hK ≡ 1 on M . Therefore, in the following, we may
assume that M \K is non-empty.

From the definition hK(x) = Px(TK < e), it follows that 0 ≤ hK(x) ≤ 1 for all x ∈ M . Suppose
we have hK(x) = 1 for some x ∈ M \K. Since hK is harmonic on M \K the maximum principle
implies that hK(x) = 1 for all x ∈ M \K. Due to hK(x) = 1 for x ∈ K it holds true that hK ≡ 1
on M and we are in the first case.

If there does not exist some x ∈ M \K with hK(x) = 1 then we have hK(x) < 1 for all x ∈ M \K.
It remains to exclude the case hK(x) = 0. Indeed, if we could find some x ∈ M \K with hK(x) = 0
then the minimum principle, i.e. the maximum principle applied to the function −hK , yields hK ≡ 0
on M \K. However, since hK(x) = 1 for x ∈ K, this contradicts the continuity of hK on M \K.
Thus, we must have hK(x) > 0 for all x ∈ M \K and we are in the second case. �
The next lemma shows that these two cases correspond to K ∈ K (M) being recurrent or transient,
respectively. In particular, this establishes the first part of Proposition 5.4.

Lemma 5.10 A set K ∈ K (M) is recurrent if hK ≡ 1 on M , whereas it is transient if K �= M
and 0 < hK(x) < 1 for all x ∈ M \K.

Proof. First, suppose that hK ≡ 1 on M and consider the event

R = {K is recurrent for X} .

We aim to prove that Px(R) = 1 for all x ∈ M . Let (ξn)n∈N be a sequence of stopping times strictly
increasing to the explosion time e. For instance, if M is compact, in which case we have e = ∞,
one can take ξn = n. On the other hand, if M is not compact one could consider an appropriate
exhaustion sequence (Dn)n∈N and set ξn = τDn

. If K is recurrent for a path X(ω) then for every
n ∈ N there exists some tn ≥ ξn(ω) such that Xtn(ω) ∈ K. Thus, if we set

Rn = {∃ t ≥ ξn such that Xt ∈ K}

then R ⊂ ∩∞
n=1Rn. On the other hand, if X(ω) ∈ Rn for all n ∈ N then X(ω) ∈ R by Definition 5.1.

Hence, we obtain

R =

∞�

n=1

Rn .

Since Rn ⊃ Rn+1 for all n ∈ N, it follows that

lim
n→∞

Px(Rn) = Px(R)

and therefore, it suffices to establish Px(Rn) = 1 for every n ∈ N. By using the strong Markov
property at the finite stopping time ξn we deduce that

Px(Rn) = Ex

�
PXξn

(TK < e)
�
= ExhK (Xξn) .

By assumption hK ≡ 1 on M and thus, Px(Rn) = 1, as required.

Secondly, we deal with the case where K �= M and 0 < hK(x) < 1 for all x ∈ M \K. We aim to
prove that K is transient. By (5.1) it suffices to establish Px(R) = 0 for all x ∈ M , where R is
the same event as considered above. Due to M \K �= ∅ we can find a relatively compact domain
D with smooth and non-empty boundary ∂D such that M \D �= ∅ and K ⊂ D. By construction,
we have ∂D ⊂ M \ K and hence, hK(x) < 1 for all x ∈ ∂D. Since the boundary of a relatively
compact domain is compact, it follows that

α = sup
x∈∂D

hK(x) < 1 .
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We now consider two sequences of stopping times (ζn)n∈N and (σn)n∈N which are given by ζ1 = 0
and

σn = inf{t ≥ ζn : Xt ∈ K} ,

ζn+1 = inf{t ≥ σn : Xt �∈ D}

for n ∈ N. As before, we agree to set inf ∅ = e. By Lemma 5.6 we have τD < ∞ a.s. Moreover,
if X explodes in finite time then it leaves every relatively compact and non-dense domain before
explosion. It follows that τD < e a.s. Thus, for any n ∈ N we obtain

R ⊂ {σn < e}

up to null sets and therefore,
Px(R) ≤ Px(σn < e) . (5.6)

Let n ≥ 2. On the event {ζn < e}, we have Xζn ∈ ∂D and can use the strong Markov property to
deduce that

Px(σn < e) = Ex

�
PXζn

(TK < e)�{ζn<e}
�

= Ex

�
hK(Xζn)�{ζn<e}

�

≤ α Px(ζn < e) .

Furthermore, we observe that {ζn < e} ⊂ {σn−1 < e}. Thus,

Px(σn < e) ≤ α Px(σn−1 < e)

and as we certainly have Px(σ1 < e) ≤ 1, it follows by induction that Px(σn < e) ≤ αn−1.
Therefore, by (5.6) it holds true that

Px(R) ≤ Px(σn < e) ≤ αn−1 ,

for all n ∈ N. This indeed implies Px(R) = 0 because αn−1 → 0 as n → ∞ for α < 1. �
It remains to prove the second part of Proposition 5.4.

Lemma 5.11 If there exists some L ∈ K (M) which is recurrent then any set K ∈ K (M) is
recurrent.

Proof. We are given the recurrent set L ∈ K (M). Let K ∈ K (M) be arbitrary and let

α = inf
x∈L

hK(x) .

By Corollary 5.9, we have 0 < hK(x) ≤ 1 for all x ∈ M and the compactness of L yields α > 0. As
in the first part of the previous proof, we consider a sequence of stopping times (ξn)n∈N strictly
increasing to the explosion time e. For n ∈ N, we again set

Rn = {∃ t ≥ ξn such that Xt ∈ K}

and conclude Px(Rn) = Ex

�
PXξn

(TK < e)
�
. Let θ = inf{t ≥ TL : Xt ∈ K}. We observe that for

any y ∈ M
Py(TK < e) ≥ Py(θ < e) . (5.7)

By assumption, L is recurrent and therefore hL ≡ 1 on M . As before, using the strong Markov
property at the finite stopping time TL gives

Py(θ < e) = Ey

�
PXTL

(TK < e)
�
= EyhK(XTL

) .
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Moreover, since L is particularly closed and as TL is finite we also have XTL
∈ L. By (5.7) it follows

that
Py(TK < e) ≥ EyhK(XTL

) ≥ α .

As y ∈ M was arbitrary this yields

Px(Rn) = Ex

�
PXξn

(TK < e)
�
≥ α

for every n ∈ N. Thus, for R = {K is recurrent for X} and every x ∈ M we obtain

Px(R) = lim
n→∞

Px(Rn) ≥ α > 0 .

By (5.1) this implies that K cannot be transient. As any set in K (M) is either recurrent or
transient, K must be recurrent. �

5.2 Equivalent criterions for transience

In this section, we find two conditions which are equivalent to Brownian motion on M being
transient. Since Brownian motion on M is either recurrent or transient, cf. Corollary 5.5, those
conditions can be turned into criterions for the recurrence of Brownian motion.

One of the two conditions makes use of the function

GM (x, y) =
1

2

� ∞

0

pM (t, x, y) dt

for x, y ∈ M and where pM (t, x, y) is the minimal heat kernel from Section 4.3. Since pM (t, x, y)
is strictly positive on (0,∞)×M ×M , cf. Theorem 4.19 (i), the function GM (x, y) is well-defined
for all x, y ∈ M , provided we allow it to take the value infinity. We generally call GM (x, y) the
Green function on M because as stated in Grigor’yan [5, Chapter 4.2], it is the smallest positive
fundamental solution of the Laplace equation on M .

The next theorem is part of a theorem in Grigor’yan [5, Chapter 5] which contains a lot more
conditions equivalent to the transience of Brownian motion on M . We follow Hsu [9, Chapter 4.4]
for the proof of the equivalence of (i) and (ii), whereas we use Grigor’yan [5, Chapter 5] and
Davies [1] to prove that (ii) is equivalent to (iii).

Theorem 5.12 Let M be a Riemannian manifold. The following are equivalent.

(i) Brownian motion on M is transient.

(ii) For all/some x �= y, the Green function on M is finite, i.e. GM (x, y) < ∞ .

(iii) For all/some z ∈ M , it holds true that
�∞
1

pM (t, z, z) dt < ∞ .

We read this theorem in the way that whenever there is a choice between ‘all’ and ‘some’ we
choose the one which makes the corresponding statement stronger. For instance, (i) ⇒ (ii) states
that Brownian motion on M being transient implies that GM (x, y) is finite for all x �= y. Similarly,
(ii) ⇒ (i) says that the existence of some x �= y with GM (x, y) < ∞ implies the transience of
Brownian motion on M .

Proof of (i) ⇔ (ii). We prove the ‘if’ direction by establishing the contrapositive, i.e. we assume
that Brownian motion on M is recurrent and aim to show that GM (x, y) = ∞ for all x �= y. Let
K ∈ K (M) be small enough so that there exists some relatively compact and non-dense domain
D ⊂ M with smooth boundary and such that K ⊂ D. Moreover, let x �= y be fixed. Using the
non-negativity of pM (t, x, y) and the Chapman-Kolmogorov equation, cf. Theorem 4.19 (i) and (v),
we deduce

GM (x, y) ≥ 1

2

� ∞

0

pM (t+ 1, x, y) dt =
1

2

� ∞

0

��

M

pM (t, x, z)pM (1, z, y) dz

�
dt . (5.8)
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For the fixed y ∈ M , we define
α = inf

z∈K
pM (1, z, y) .

Since pM (1, z, y) is strictly positive as well as continuous on M and as K is compact, it follows
that α > 0. From (5.8) and Proposition 4.18, we further obtain that

GM (x, y) ≥ α

2

� ∞

0

��

K

pM (t, x, z) dz

�
dt

=
α

2

� ∞

0

Px(Xt ∈ K, t < e) dt =
α

2
Ex

� ∞

0

�{Xt∈K,t<e} dt .

In the last step, we applied Fubini’s Theorem. As before, let τD be the first exist time from D and
let (ζn)n∈N, (σn)n∈N be the sequences of stopping times given by ζ1 = 0 as well as

σn = inf{t ≥ ζn : Xt ∈ K} ,

ζn+1 = inf{t ≥ σn : Xt �∈ D}

for n ∈ N. We claim that the recurrence of K implies that σn < e and ζn < e for all n ∈ N.
First, we note Px(TK < e) = hK(x) = 1 which yields σ1 = TK < e. Secondly, by Lemma 5.6 and
the fact that if X explodes in finite time then it leaves every relatively compact and non-dense
domain before explosion, we also have τD < e. Thus, if σm < e for some fixed m ∈ N, we can
apply the strong Markov property at the finite stopping time σm to deduce ζm+1 < e. By using
the strong Markov property at the finite stopping time ζm+1 and due to the recurrence of K we
conclude σm+1 < e from ζm+1 < e. The desired result then follows by induction. In particular,
ζn ≤ t ≤ ζn+1 ensures t < e. Moreover, we observe that �{Xt∈K} = 0 for all t with ζn < t < σn.
Therefore, by also using the strong Markov property at the finite stopping times σn we deduce

Ex

� ∞

0

�{Xt∈K,t<e} dt ≥
∞�

n=1

Ex

� ζn+1

ζn

�{Xt∈K} dt

=

∞�

n=1

Ex

� ζn+1

σn

�{Xt∈K} dt

=

∞�

n=1

ExEXσn

� τD

0

�{Xt∈K} dt .

From Proposition 4.17, it follows that for any u ∈ K

Eu

� τD

0

�{Xt∈K} dt = Eu

� ∞

0

�{Xt∈K,t<τD} dt =
� ∞

0

��

K

pD(t, u, z) dz

�
dt .

By the compactness and non-emptiness of K and due to Theorem 4.14 (i), we get

β = inf
u∈K

� ∞

0

��

K

pD(t, u, z) dz

�
dt > 0 .

Finally, we observe that Xσn ∈ K. Putting everything together and using α,β > 0, we obtain

GM (x, y) ≥ α

2

∞�

n=1

ExEXσn

� τD

0

�{Xt∈K} dt ≥
α

2

∞�

n=1

β = ∞ .

This yields GM (x, y) = ∞, as required.

For the ‘only if’ direction, assume that Brownian motion on M is transient. We aim to prove that
GM (x, y) < ∞ for all x �= y. Let x ∈ M be arbitrary and let K ∈ K (M) be a small set for which
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one can find a relatively compact and non-dense domain D with smooth and non-empty boundary
such that K ⊂ D. Moreover, let (ζn)n∈N and (σn)n∈N be the same sequences of stopping times as
defined above. Making similar deductions as in the first part of the proof, we obtain

2

�

K

GM (x, z) dz = Ex

� ∞

0

�{Xt∈K,t<e} dt = Ex

� e

0

�{Xt∈K} dt =
∞�

n=1

Ex

� ζn+1

σn

�{Xt∈K} dt .

By the strong Markov property, we also get

Ex

� ζn+1

σn

�{Xt∈K} dt = Ex

��
EXσn

� τD

0

�{Xt∈K} dt

�
�{σn<e}

�
≤ Ex

��
EXσn

τD
�
�{σn<e}

�
. (5.9)

Set
γ = sup

z∈D
EzτD ,

which has to satisfy γ < ∞ by Lemma 5.6. Since Xσn
∈ K ⊂ D we can use (5.9) to further deduce

that

Ex

� ζn+1

σn

�{Xt∈K} dt ≤ γ Ex

�
�{σn<e}

�
= γ Px(σn < e) .

On the other hand, as in the second half of the proof of Lemma 5.10 we also have Px(σn < e) ≤ δn−1,
where

δ = sup
z∈∂D

hK(z) .

Moreover, as before it holds true that δ < 1 because K is transient and ∂D is compact. In total,
it follows that

2

�

K

GM (x, z) dz =

∞�

n=1

Ex

� ζn+1

σn

�{Xt∈K} dt ≤ γ

∞�

n=1

Px(σn < e)

≤ γ
∞�

n=1

δn−1 =
γ

1− δ
< ∞ .

In particular, there must exist some y ∈ K with y �= x and such that GM (x, y) < ∞. Due to the
implication (ii) ⇒ (iii), which we prove below, this implies

�∞
1

pM (t, z, z) dt < ∞ for all z ∈ M
and hence, by (iii) ⇒ (ii) it follows that GM (x, y) < ∞ for all y �= x. �
Proof of (ii) ⇔ (iii). We need the following fact, which is a special case of [1, Theorem 10]. If T > 0
and x1, x2, x3, x4 ∈ M are fixed then there exists a positive constant c = c(T, x1, x2, x3, x4) such
that

pM (t, x1, x2) ≤ c pM (t, x3, x4)

for all t ≥ T . A proof which makes use of the Chapman-Kolmogorov equation and the local
parabolic Harnack inequality is given in Davies [1].

Let us assume that there exists some x �= y in M with GM (x, y) < ∞. Due to

GM (x, y) =
1

2

� ∞

0

pM (t, x, y) dt

it follows that � ∞

1

pM (t, x, y) dt < ∞ .

By the fact given, for any z ∈ M there exists some positive constant c such that

pM (t, z, z) ≤ c pM (t, x, y)
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for all t ≥ 1. In particular, we obtain

� ∞

1

pM (t, z, z) dt ≤ c

� ∞

1

pM (t, x, y) dt < ∞ .

As z ∈ M was arbitrary, this gives (iii).

Conversely, assume that
�∞
1

pM (t, z, z) dt < ∞ for some fixed z ∈ M . Let x �= y be arbitrary. By
again using the above fact, we deduce

� ∞

1

pM (t, x, y) dt < ∞ .

Furthermore, due to x �= y and Theorem 4.19 (iii) we have

pM (t, x, y) → 0 as t → 0 .

Thus, it follows that
� 1

0
pM (t, x, y) dt < ∞ which yields

GM (x, y) =
1

2

� ∞

0

pM (t, x, y) dt < ∞ ,

as claimed. �

5.3 Considering concrete examples

Finally, we present some examples of Riemannian manifolds for which one can decide whether
Brownian motion on them is recurrent or transient.

First, let us consider the manifold M = Rd equipped with a metric of the form

h = dr2 + σ(r)2hSd−1 ,

where σ(r) is a positive function on (0,∞) and where hSd−1 denotes the standard Euclidean
metric on the sphere Sd−1. For instance, the Euclidean metric on Rd has σ(r) = r, whereas the
disc model of the hyperbolic plane in geodesic polar coordinates corresponds to the case d = 2 and
σ(r) = sinh(r).

By using the Riemannian metric h we can define the distance d(x, y) between two points x, y ∈ Rd.
Let Sh(r) denote the area of a geodesic sphere of radius r centred at the origin in the Riemannian
manifold

�
Rd, h

�
. In Grigor’yan [5, Example 4.1] it is shown that the Green function G(Rd,h) on�

Rd, h
�
satisfies

G(Rd,h)(0, x) =

� ∞

d(0,x)

dr

Sh(r)
.

We observe that a geodesic sphere of radius r centred at the origin in the Riemannian manifold�
Rd, h

�
corresponds to a (d− 1)-dimensional Euclidean sphere of radius σ(r). Thus, if cd−1 is the

area of a (d− 1)-dimensional Euclidean unit sphere then

Sh(r) = σ(r)d−1cd−1 .

It follows that

G(Rd,h)(0, x) =

� ∞

d(0,x)

dr

σ(r)d−1cd−1
. (5.10)

We recall that for a > 0
� ∞

a

dr

rd−1
= ∞ if d ≤ 2 and

� ∞

a

dr

rd−1
< ∞ if d > 2 .
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Since d(0, x) > 0 if x �= 0, we can use (5.10) and Theorem 5.12 to verify that Brownian motion on
the Euclidean space Rd is recurrent if d = 1, 2 and transient if d ≥ 3. Furthermore, one can show
that for a > 0 � ∞

a

dr

sinh(r)
= − log

�
tanh

�a
2

��
< ∞ .

Hence, again by Theorem 5.12, Brownian motion on the hyperbolic plane is transient. As Brownian
motion on the Euclidean plane is recurrent and since both the hyperbolic plane and the Euclidean
plane are two-dimensional manifolds, we observe that the recurrence and transience behaviour of
Brownian motion on a Riemannian manifold really does depend on its shape and not only on its
dimension.

By using the next lemma, it is also easy to give examples of Riemannian manifolds of arbitrary
large dimension on which Brownian motion is recurrent.

Proposition 5.13 Brownian motion on a compact Riemannian manifold M is recurrent.

Proof. Suppose Brownian motion on M is not recurrent. As in the proof of Corollary 5.5 this
implies that any compact subset of M is transient. However, this is a contradiction as M itself is
both recurrent and compact. �
Hence, the unit sphere Sd is an example of a d-dimensional manifold on which Brownian motion
is recurrent.
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