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1 Introduction

This report deals with linear hyperbolic partial differential equations. The prototype of such an equation
is the classical wave equation

�u :=

(
− ∂2

∂t2
+

∂2

∂x2
1

+ . . .+
∂2

∂x2
n

)
u = 0 (1.1)

for a function u on Rn+1. Our notion of hyperbolicity is made precise in the following

Definition 1.1 Let P be a linear partial differential operator of order m acting on real-valued functions
(t, x) 7→ u(t, x) with (t, x) ∈ R×Rn. Setting fα := exp(iα(tτ +x · ξ)), the principal symbol of P is defined
by the polynomial

pm(t, x, τ, ξ) := lim
α→∞

α−m[f̄αPfα](t, x), (1.2)

of degree m. We call P strictly hyperbolic if s 7→ pm(t, x, s, ξ) has m distinct real roots for all ξ 6= 0.

Remark 1.2 The coefficient of ∂m/∂tm in all strictly hyperbolic operators of degree m is non-zero. We
therefore assume this coefficient to be one.

It is a feature of the wave equation to allow for travelling wave packets, i. e. for solutions which are
localised in space and propagate in time on certain curves and this property is shared by the class of
all linear hyperbolic PDEs Pu = 0 on Rn+1. One can construct such localised solutions by means of
Gaussian beams, which are approximate solutions of the form

(t, x) 7→ eikψ(t,x)

(
a0(t, x) +

a1(t, x)

k
+ . . .+

aN (t, x)

kn

)
, (1.3)

where ψ and ai, for 1 ≤ i ≤ N ∈ N, are real-valued and k > 1. One shows that these Gaussian beams
must be concentrated around ray paths.

Definition 1.3 Let P be a strictly hyperbolic operator and pm its principal symbol. Let (t̂, x̂, ξ̂) ∈ R ×
Rn × Rn\{0} and choose τ̂ ∈ R such that

pm(t̂, x̂, τ̂ , ξ̂) = 0. (1.4)

Then γ : s 7→ (t(s), x(s), τ(s), ξ(s)) is a null bicharacteristic curve through (t̂, x̂, ξ̂) if the Hamiltonian
system

ẋ =
∂pm
∂ξ

, ṫ =
∂pm
∂τ

, ξ̇ = −∂pm
∂x

, τ̇ = −∂pm
∂t

(1.5)

is satisfied with (t(0), x(0), τ(0), ξ(0)) = (t̂, x̂, τ̂ , ξ̂). We call the projection of a bicharacteristic on the
(t, x)-space a ray path.

Remark 1.4 Recall that for Ω ⊆ R2(n+1) and

F : Ω −→ R, (t, x, τ, ξ) 7→ F (t, x, τ, ξ) (1.6)

the Hamiltonian vector field is defined by

HF :=

(
∂F

∂τ

∂

∂t
− ∂F

∂t

∂

∂τ

)
+

n∑
i=1

(
∂F

∂ξi

∂

∂xi
− ∂F

∂xi

∂

∂ξi

)
. (1.7)

Thus each null bicharacteristic curve γ satisfies γ̇ = Hpm .
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Another characteristic of hyperbolic equations is that they allow for solutions with singularities, which is
in sharp contrast to elliptic partial differential equations where a solution u of Du = f for elliptic D and
smooth f is always smooth. This gives rise to the interesting question how singularities in solutions to a
hyperbolic PDE propagate. The notion of propagation of singularities will be made more precise in due
course.
This report is structured as follows. First we will sketch the method of approximating solutions to the
linear wave equation using geometrical optics, which is closely related to the Gaussian beam ansatz, and
we will explain the limitations of the geometrical method. The subsequent part will be devoted to the
construction of Gaussian beams on Rn+1 for arbitrary strictly hyperbolic operators P and for the special
case of �. Thereafter we shall explore how to adapt this construction for the background R × Ω with a
bounded domain Ω ⊆ Rn. The last sections will deal with the aforementioned propagation of singularities
and will apply the Gaussian beam approximation to characterise the propagation of singularities.
The main reference for the theory presented in this report is Ralston’s article [3]. The section about
geometrical optics follows the lines of Taylor [5].
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2 Geometrical optics

The geometric optics approximation is an important tool in studying the wave equation. The threefold
purpose of this section is to introduce this method, to show its limitations and to prepare the way for
the Gaussian beam approximation. Therefore we do not intend to give an account of the geometrical
optics ansatz in its most general form, but rather presenting an approach parallel to our construction of
Gaussian beams.
Consider again the wave equation �u = 0 on Rn+1. We aim to find approximate solutions of the form

(t, x) 7→ eikψ(t,x)
∑
j≥0

aj(t, x)

(ik)j
(2.1)

with a, ψ ∈ C∞((−T, T ) × Rn) for some T > 0. More precisely, we want to achieve that, for vN :=

eikψ(t,x)
∑N
j=0

aj(t,x)
(ik)j ,

�vN = O(k−ν) (2.2)

in CN+1−ν for 0 ≤ ν ≤ N . We will see that we can arrange this if, for all N , we require

vN (0, x) = a(x) eikϕ(x) (2.3)

where a ∈ C∞0 (Rn) and ϕ ∈ C∞(Rn) with ∇ϕ 6= 0 on a neighbourhood of supp a.

2.1 Construction of the approximation

One easily calculates that

�vN = eikψ

(
�a0 + . . .+

�aN
(ik)N

)
(2.4)

− 2ik eikψ

(
∂tψ

(
∂ta0 + . . .+

∂taN
(ik)N

)
−

n∑
i=1

∂iψ

(
∂ia0 + . . .+

∂iaN
(ik)N

))
(2.5)

+ ik�ψvN + k2(|∂tψ|2 − |∇xψ|2)vN (2.6)

The coefficient of k2 is

eikψ a0(|∂tψ|2 − |∇xψ|2), (2.7)

the coefficient of k1 can be written as

i eikψa0�ψ − i eikψ(|∂tψ|2 − |∇xψ|2)a1 (2.8)

− i eikψ

(
2∂tψ

∂a0

∂t
− 2∇xψ · ∇xa0

)
(2.9)

and for k1−j (j ≥ 1), we have

i1−j eikψ aj�ψ − i1−j eikψ aj+1(|∂tψ|2 − |∇xψ|2) (2.10)

+ 2i1−j eikψ

(
∂tψ∂ta1 −

n∑
i=1

∂iψ∂iaj

)
+ i1−j eikψ �a0. (2.11)

We will set these coefficients successively equal to zero. The coefficient of k2 vanishes if ϕ satisfies the
eikonal equation

−
∣∣∣∣∂ψ∂t

∣∣∣∣2 + |∇xψ|2 = 0 (2.12)
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with initial datum ψ(0, x) = ϕ(x). Below we will prove that there is a neighbourhood U of K := supp a
and a T > 0 such that the eikonal equation exhibits a unique solution for each choice of

√
·, i. e. a

ϕ ∈ C∞((−T, T )× U) with

ψ(0, x) = ϕ(x),
∂ψ

∂t
(0, x) = −|∇xψ(x)|. (2.13)

Remark 2.1 Equation (2.12) can be written as

p2

(
t, x,

∂ψ

∂t
,∇xψ

)
= 0 (2.14)

with the principal symbol p2 of the wave equation. In the geometrical optics ansatz we require the principal
symbol to vanish, but this may lead to a solution which is only local time, i. e. T < ∞, meaning that we
cannot construct a global approximate solution to the wave equation. In the Gaussian beam approximation,
we require equation (2.14) to hold only up to a certain order, which will be crucial to guarantee global
approximations.

Proceeding to next order, we see that the coefficient of λ1 vanishes if the transport equation

2
∂ψ

∂t

∂a0

∂t
= 2∇xψ · ∇xa0 + a0�ψ (2.15)

is satisfied. Noting that ∂tϕ 6= 0 on U for |t| sufficiently small, one shows as in [5] that this PDE has
unique solutions once initial conditions are specified. Equation (2.3) implies that

a0(0, x) = a(x). (2.16)

Thus we get a0 ∈ C∞((−T, T )× U), compactly supported in U on every time slice, for T small enough.
The terms in equation (2.10) vanish provided that

2
∂ψ

∂t

∂aj
∂t

= 2∇xψ · ∇xaj − aj�ψ + �aj−1. (2.17)

In the light of (2.3), we require

aj(0, x) = 0. (2.18)

Hence the transport equation (2.17) has a unique solution aj ∈ C∞((−T, T )× U), compactly supported
in U on each time slice, for T small enough.
The above construction yields that

�vN = (ik)−N�aN eikψ, (2.19)

and we conclude that

�vN = O(k−ν) (2.20)

in CN+1−ν((−T, T )× U) for 0 ≤ ν ≤ N .
Therefore the geometrical optics ansatz gives a suitable approximation to solutions of the wave equation.
Furthermore, this approximation induces possible initial conditions for an initial value problem in Rn+1.

2.2 The eikonal equation

A crucial step in the construction above was the appeal to solutions of the eikonal equation. Considering
eikonal equations of the form

pm

(
t, x,

∂ψ

∂t
,∇xψ

)
= 0 (2.21)
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to high order is a key idea in the Gaussian beam approximation. To introduce the abstract methods which
are related to study this problem, we will give an account of how existence and uniqueness of solutions
to the eikonal equation can be shown. We will conclude this section by explaining why solutions to this
equation need not be global, which results in a break down of the geometrical optics approximation.
The eikonal equation is of the more general form

F (x, du) = 0 (2.22)

for F smooth on R2(n+1). Let S = {t = 0} and v smooth on S. Require u|S = v. Let x0 ∈ S and
ξ0 := ∇xv. Let τ0 ∈ R be such that

F (x0, (τ0, ξ0)) = 0. (2.23)

Note that if F is the principal symbol of a strictly hyperbolic operator, then such a choice is always
possible provided that ξ0 6= 0. We assume that S satisfies the noncharacteristic hypothesis

∂F

∂τ
(x0, (τ0, ξ0)) 6= 0. (2.24)

If F is the principal of �, then this is satisfied as long as ξ0 6= 0.
We look for a solution by appealing to the theory of Hamiltonian systems. Recall that a symplectic form
σ on R2(n+1) = {(x, ξ) ∈ Rn+1 × Rn+1} is given by

σ =

n∑
j=1

dξj ∧ dxj . (2.25)

Now let Λ be the graph of a function ξ = Ξ(x) in R2(n+1). Then the following holds.

Proposition 2.2 The surface Λ is locally the graph of du for a smooth function u if and only if

∂Ξj
∂xk

=
∂Ξk
∂xj

(2.26)

for all j, k.

Proof. Condition (2.26) is equivalent to saying that
∑n
i=1 Ξi(x)dxi is closed. By the Poincaré lemma,

there is a smooth u such that du =
∑n
i=1 Ξi(x)dxi locally, but this is equivalent to Λ being locally the

graph of du. �

Proposition 2.3 The surface Λ is locally the graph of du if and only if σ(X,Y ) = 0 for all vectors X,Y
tangent to Λ.

Proof. It suffices to check the condition on σ on a generating system of tangent vectors. Define

Xj =
∂

∂xj
+

n∑
l=1

∂Ξl
∂xj

∂

∂ξl
(2.27)

for j = 1, . . . , n. Then these generate the tangent space and one easily checks that

σ(Xk, Xj) =
∂Ξj
∂xk

− ∂Ξk
∂xj

. (2.28)

The result follows from the previous proposition. �
We define a set Σ ⊆ R2(n+1) over S by

Σ = {(x, ξ) : t = 0, ξj = ∂jv, F (x, (τ, ξ)) = 0} (2.29)

using x = (t, x′). The noncharacteristic condition implies by the implicit function theorem that there is
a local smooth function τ(x′) such that F (x, (τ, ξ)) = 0. Thus Σ is an n-dimensional surface.
Define Λ to be the union of the integral curves of the Hamiltonian vector field HF through Σ. By the
noncharacterisitc condition, HF has a nonvanishing ∂/∂t component so that Λ has dimension n+ 1 and
is graph of a function ξ = Ξ(x) in a neighbourhood of x0.
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Theorem 2.4 The surface Λ is locally the graph of du for a solution u to

F (x,du) = 0, u|S = 0. (2.30)

Proof. Let X,Y be vector fields tangent to Λ at (x, ξ) ∈ Λ. By the previous propositions, it suffices to
show σ(X,Y ) = 0. First, suppose that x ∈ S, i. e. (x, ξ) ∈ Σ. Decompose X = X1 +X2, Y = Y1 +Y2 such
that X1, Y1 are tangent to Σ and X2, Y2 are multiples of HF . The surface Σ is the graph of a gradient
if considered as its restriction to R2n (forgetting t and τ). By Proposition 2.3 we have σ(X1, Y1) = 0.
Recalling that σ(HF , ·) = −dF and that F = 0 along integral curves of HF , it follows that

σ(X,Y ) = σ(X1, Y1) + σ(X2, Y1, ) + σ(X1, Y2) + σ(X2, Y2) = 0. (2.31)

Denote the flow generated by HF by Fs. Now let (x, ξ) ∈ Σ and X,Y tangent at Fs(x, ξ) ∈ Λ. We have

σ(X,Y ) = (Fs)∗σ((Fs)∗X, (Fs)∗Y ), (2.32)

where (F2)∗ denotes the pullback. Note that (F t)∗X, (F t)∗Y are tangent at Σ. Using that the flow
generate by HF leaves the symplectic form invariant so that

σ(X,Y ) = σ((F t)∗X, (F t)∗Y ) = 0, (2.33)

which proves the theorem. �

Remark 2.5 This type of construction using the framework of symplecticity is exactly the one which will
be used in the construction of a ψ such that

pm (x, ∂ψ/∂x) = 0. (2.34)

The above existence proof of solutions to (2.30) immediately shows why we cannot expect global solutions
in general. If integral curves of HF cross, i. e. if Fs is not injective anymore, then solutions break down.

Example 2.6 Let F be the principal symbol of the wave equation in R2+1, i. e. F (t, x, τ, ξ) = −τ2 + |ξ|2.
We choose the initial datum v(x, y) = sinx+ cos y on S = {t = 0}. Then ∇xv 6= 0 for x ∈ (−π/2, π/2)×
(−π, π). Defining Σ as above, we act with the Hamiltonian vector field

HF = 2

√
cos2 x+ sin2 y

∂

∂t
+ 2 cosx

∂

∂x
− 2 sin y

∂

∂y
. (2.35)

One can easily find two integral curves which cross in finite time.
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3 The construction of Gaussian beams

For the pure construction of Gaussian beams, we do not need a distinguished time coordinate as we do
not have to think about going forward or backwards in time. Therefore, in order to ease notation, we use
x0 = t until specified otherwise. In particular, we write x to denote (x0, x1, . . . , xn) ∈ Rn+1.

Let P(x,D) be a strictly hyperbolic linear partial differential operator of order m with real principal
symbol pm(x, ξ) and let Γ be a smooth curve in Rn+1, which is given by x(s) for s ∈ R. We are interested
in finding asymptotic solutions u(x, k) to the partial differential equation P(x,D)u = 0 which become
concentrated on Γ as k → ∞. According to the Gaussian beam ansatz, we consider functions u of the
form

u(x, k) = eikψ(x)

(
a0(x) +

a1(x)

k
+ · · ·+ aN (x)

kN

)
. (3.1)

As we want u to be an asymptotic solution to P(x,D)u = 0 we aim to find a0(x), a1(x), . . . , aN (x) and
ψ(x) such that

P(x,D)u = O
(
k−M

)
(3.2)

for some large M . On the other hand, we also want u to become concentrated on Γ as k → ∞ and for
that reason, we would like to choose ψ(x) such that for all s ∈ R

(a) ψ(x(s)) is real-valued and

(b) Im ∂2ψ
∂xi∂xj

(x(s)) is positive definite on vectors orthogonal to ẋ(s).

We note that if both (a) and (b) are satisfied then u rapidly decreases off Γ because
∣∣eikψ(x)

∣∣ looks like
a Gaussian distribution with variance proportional to k−1 on planes perpendicular to Γ. Thus, after
multiplying u by a k-independent function which vanishes outside a small enough neighbourhood of Γ
but which is also equal to one on an even smaller neighbourhood of Γ, we obtain an asymptotic solution
to P(x,D)u = 0 which indeed becomes concentrated on Γ as k →∞.

Moreover, the rapid decrease off Γ which is implied by choosing ψ(x) subject to (a) and (b) is also used
in establishing (3.2). As we see later, the estimate (3.2) follows from the vanishing of P(x,D)u on Γ to
sufficiently high order.

Applying P(x,D) to the general form (3.1) gives

P(x,D)u = kmpm

(
x,
∂ψ(x)

∂x

)
eikψ(x) a0(x) +O(km−1) .

Thus, in order to achieve (3.2) we might want to try to find ψ(x) such that pm

(
x, ∂ψ∂x

)
≡ 0. However, in

the geometric optics section, we saw that this could be too much to ask for as it might result in solutions

breaking down in finite time. It turns out that it suffices to have pm

(
x, ∂ψ∂x

)
vanish to high order on Γ.

Let us now see what conditions we obtain by requiring that f(x) = pm

(
x, ∂ψ(x)

∂x

)
vanishes to high order

on Γ. Vanishing of order zero gives
pm (x(s), ξ(s)) = 0 (3.3)

where ξ(s) = ∂ψ
∂x (x(s)), whereas vanishing of order one yields (using summation convention)

0 =
∂f

∂xi
=
∂pm
∂xi

+
∂pm
∂ξk

∂2ψ

∂xi∂xk
(3.4)

along Γ for i = 0, 1, . . . , n. Before we have a look at the higher orders of f , we look at condition (3.4) in
more detail.

Since the principal symbol pm is real, taking the imaginary part of (3.4) gives

0 =
∂pm
∂ξk

(x(s), ξ(s))

(
Im

∂2ψ

∂xi∂xk
(x(s))

)
.
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Thus, for all s ∈ R we need ∂pm
∂ξ (x(s), ξ(s)) to be parallel to ẋ(s) since otherwise we could find some

s0 ∈ R for which Im ∂2ψ
∂xi∂xk

(x(s0)) was not positive definite on vectors orthogonal to ẋ(s0). After a
reparametrisation, we can then assume that

ẋ(s) =
∂pm
∂ξ

(x(s), ξ(s))

for all s ∈ R. Plugging this into condition (3.4) yields

0 =
∂pm
∂xi

+
dxk
ds

∂2ψ

∂xk∂xi
=
∂pm
∂xi

+
dxk
ds

∂ξi
∂xk

from which we obtain that

ξ̇(s) = −∂pm
∂x

(x(s), ξ(s)) .

Hence, we cannot construct a Gaussian beam along Γ, unless (x(s), ξ(s)) is a bicharacteristic curve, cf.
definition below.

Definition 3.1 A curve (x(s), η(s)) is a bicharacteristic for a linear partial differential operator P(x,D)
of order m if it is a solution of

ẋ(s) =
∂pm
∂η

(x(s), η(s)) and η̇(s) = −∂pm
∂x

(x(s), η(s)) ,

where pm is the principal symbol of P(x,D).

It follows straight from the definition that pm(x(s), η(s)) is constant along any bicharacteristic curve
(x(s), η(s)). This helps in dealing with requirement (3.3) in our Gaussian beam construction. Provided
that for the curve Γ along which we want to construct a Gaussian beam the curve

(x(s), ξ(s)) =

(
x(s),

∂ψ

∂x
(x(s))

)
is indeed a bicharacteristic, we only need to check if

pm(x(0), ξ(0)) = 0

to ensure that (3.3) holds for all s ∈ R. Bicharacteristic curves which satisfy (3.3) are commonly referred
to as null bicharacteristics.

Hence, so far we have established that unless (x(s), ξ(s)) is a null bicharacteristic curve there is no
hope of constructing a Gaussian beam along Γ = {x(s)}. Therefore, throughout the remainder of the
construction we shall assume that (x(s), ξ(s)) is a null bicharacteristic curve. Under this assumption we
are also guaranteed that ẋ(s) 6= 0 for all s ∈ R due to the following reasons. Since P(x,D) is a strictly
hyperbolic operator the polynomial

g(ξ0) = pm((x0, x1, . . . , xn), (ξ0, ξ1, . . . , ξn))

cannot have multiple roots for (ξ1, . . . , ξn) 6= 0. In particular, from pm(x(s), ξ(s)) ≡ 0 it follows that

∂pm
∂ξ0

(x(s), ξ(s)) 6= 0

and therefore,

ẋ(s) =
∂pm
∂ξ

(x(s), ξ(s)) 6= 0 ,

as claimed. Moreover, note that for bicharacteristic curves (x(s), ξ(s)) condition (3.4) is only the com-
patibility condition

ξ̇i(s) =
∂2ψ

∂xi∂xj
ẋj(s) .
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Let us now consider what conditions we obtain by requiring that f(x) = pm

(
x, ∂ψ(x)

∂x

)
vanishes to

second order on Γ. As we will see below this gives rise to a non-linear ordinary differential equation and
the crucial part of the Gaussian beam construction will be to show that one can solve this differential
equation globally. We want

0 =
∂2f

∂xj∂xi
(3.5)

=
∂2pm
∂xj∂xi

+
∂2pm
∂ξk∂xi

∂2ψ

∂xj∂xk
+

∂2pm
∂xj∂ξk

∂2ψ

∂xi∂xk
+

∂2pm
∂ξl∂ξk

∂2ψ

∂xi∂xk

∂2ψ

∂xj∂xl
+
∂pm
∂ξk

∂3ψ

∂xj∂xk∂xi

to hold along Γ for i, j = 0, 1, . . . , n. Introducing the matrices

(M(s))ij =
∂2ψ

∂xi∂xj
(x(s)) , (A(s))ij =

∂2pm
∂xi∂xj

(x(s), ξ(s)) , (B(s))ij =
∂2pm
∂ξi∂xj

(x(s), ξ(s))

and

(C(s))ij =
∂2pm
∂ξi∂ξj

(x(s), ξ(s))

one can rewrite the second order condition (3.5) as the matrix equation

0 = A+MB +BTM +MCM +
dM

ds
. (3.6)

Note that the matrices A(s), B(s) and C(s) are known as both the principal symbol pm and the null

bicharacterisic curve (x(s), ξ(s)) are given. Thus, in order to have pm

(
x, ∂ψ(x)

∂x

)
vanish to second order

on Γ, we need to construct ψ such that the matrix M(s) satisfies the non-linear ordinary differential
equation (3.6) globally on Γ. This turns out to be possible due to (3.6) being a Ricatti equation for the
matrix M(s).

Moreover, when solving (3.6) for the matrix M(s), we want the solution M(s) to be symmetric, we need

M(s)ẋ(s) = ξ̇(s)

to hold true for all s ∈ R and due to the desired condition (b) on ψ we also want ImM(s) to be positive
definite on the orthogonal complement of ẋ(s). As we see below, it will be enough to ensure that M(0)
has these three properties.

To construct a solution to (3.6), we start by choosing matrix solutions to the linear system

Ẏ = BY + CN

Ṅ = −AY −BTN .
(3.7)

By linearity, there exists a unique global solution (Y (s), N(s)) to this system of ordinary differential
equations for any initial data (Y (0), N(0)). Furthermore, if Y (s) is invertible around s = s0 then NY −1

is a solution to (3.6) around s0. This follows from the calculation

d

ds

(
NY −1

)
= ṄY −1 −NY −1Ẏ Y −1

= −A−BTNY −1 −NY −1B −NY −1CNY −1 .

The good property of Gaussian beams is that you can choose the initial data (Y (0), N(0)) so that Y (s) is
invertible for all s. Let M be a symmetric matrix such that ImM is positive definite on the orthogonal
complement of ẋ(0) and such thatMẋ(0) = ξ̇(0). In the following sequence of lemmas, we establish that
if one chooses (I,M) as initial data then Y (s) is invertible for all s and M(s) = N(s)Y −1(s) inherits the
three desired properties from M. In particular, note that we have

M(0) = N(0)Y −1(0) =M .

11



Lemma 3.2 Let (Y (s), N(s)) be the solution to (3.7) with initial data (Y (0), N(0)) = (I,M). Then it
holds true that

(ẋ(s), ξ̇(s)) = (Y (s)ẋ(0), N(s)ẋ(0)) .

Proof. Using that (x(s), ξ(s)) is a bicharacteristic curve one computes

d

ds
(ẋi) =

∂2pm
∂xj∂ξi

ẋj +
∂2pm
∂ξj∂ξi

ξ̇j = Bij ẋj + Cij ξ̇j

as well as
d

ds

(
ξ̇i

)
= − ∂2pm

∂xj∂xi
ẋj −

∂2pm
∂ξj∂xi

ξ̇j = −Aij ẋj −
(
BT
)
ij
ξ̇j .

Thus, (ẋ(s), ξ̇(s)) and (Y (s)ẋ(0), N(s)ẋ(0)) solve the same linear system of ordinary differential equations.
The equality of the two curves follows because we additionally have Y (0)ẋ(0) = ẋ(0) and

N(0)ẋ(0) =Mẋ(0) = ξ̇(0)

due to our choice of M. �

For the next lemmas, we need the symplectic form σ(χ1, χ2) acting on pairs χ1(s) = (y1(s), η1(s)) and
χ2(s) = (y2(s), η2(s)) of vector solutions to (3.7). The bilinear form σ(χ1, χ2) is given by

σ(χ1, χ2) = y2 · η1 − y1 · η2 .

Besides, we need the complexified form

σC(χ1, χ2) = σ(χ1, χ2) .

Proposition 3.3 If χ1 and χ2 are vector solutions to (3.7) then both the symplectic form σ(χ1, χ2) and
the complexified form σC(χ1, χ2) are constant in s.

Proof. The proof relies on the observation that the entries of A, B and C are real and that A and C are
symmetric. Differentiating the symplectic form with respect to s yields

d

ds
σ(χ1, χ2) =

d

ds

(
y2 · η1 − y1 · η2

)
= ẏ2 · η1 + y2 · η̇1 − ẏ1 · η2 − y1 · η̇2

= By2 · η1 + Cη2 · η1 − y2 ·Ay1 − y2 ·BTη1 −By1 · η2 − Cη1 · η2 + y1 ·Ay2 + y1 ·BTη2

which equals zero due to

y1 ·Ay2 =
(
y1
)T
Ay2 =

(
y1
)T
ATy2 = Ay1 · y2 and Cη2 · η1 = Cη1 · η2

(using the symmetry of A and C) as well as

By2 · η1 = y2 ·BTη1 and By1 · η2 = y1 ·BTη2 .

By using that the entries of A, B and C are real, one similarly proves the constancy of the complexified
form. �

Lemma 3.4 Let (Y (s), N(s)) be the solution to (3.7) with initial data (Y (0), N(0)) = (I,M). Then Y (s)
is invertible for all s.

Proof. Let s0 be arbitrary and suppose Y (s0)a = 0 for some vector a ∈ Cn+1. The aim is to deduce that
a must then be the zero vector as this will imply that Y (s0) is invertible.

12



Let us consider χ(s) = (y(s), η(s)) = (Y (s)a,N(s)a) which has to be a vector solution of (3.7) because
(Y (s), N(s)) is a solution to (3.7) and a is constant. From the conservation of the complexified form it
follows that

0 = σC(χ(s0), χ(s0)) = σC(χ(0), χ(0)) = y(0) · η(0)− y(0) · η(0)

= a · Ma− a · Ma

= 2ia · (ImM) a .

By assumption, ImM is positive definite on the orthogonal complement of ẋ(0) and therefore, the last
equation implies that a = βẋ(0) for some constant β ∈ C. By using Lemma 3.2, we further deduce that

0 = Y (s0)a = βY (s0)ẋ(0) = βẋ(s0) .

Previously, we have established that ẋ(s0) 6= 0 and so it follows that β = 0. Hence, a = 0 and the matrix
Y (s0) is indeed invertible. �

Thus, if (Y (s), N(s)) is the solution to (3.7) with initial data (Y (0), N(0)) = (I,M) then

M(s) = N(s)Y −1(s)

is well-defined and therefore, it is a global solution to (3.6). It remains to prove that M(s) has all the
desired properties mentioned above. One of them is an immediate conlusion from Lemma 3.2 as we have

ξ̇(s) = N(s)ẋ(0) = M(s)Y (s)ẋ(0) = M(s)ẋ(s)

for all s ∈ R. The other two properties are covered by the following two lemmas.

Lemma 3.5 Let (Y (s), N(s)) be the solution to (3.7) with initial data (Y (0), N(0)) = (I,M). Then
M(s) = N(s)Y −1(s) is a symmetric matrix for all s ∈ R.

Proof. The proof mainly uses the constancy of the symplectic form. Let yi(s), 0 ≤ i ≤ n denote the
column vectors of Y (s), let ηi(s), 0 ≤ i ≤ n denote those of N(s) and let χi(s) = (yi(s), ηi(s)). By
construction of M(s), we have ηi(s) = M(s)yi(s) and therefore, for any i, j ∈ {0, 1, . . . , n} it holds true
that

σ(χi(s), χj(s)) = yj(s) · ηi(s)− yi(s) · ηj(s) = yj(s) ·M(s)yi(s)− yi(s) ·M(s)yj(s) .

Due to the symmetry of M(0) =M and the constancy of the symplectic form, it follows that

yj(s) ·M(s)yi(s)− yi(s) ·M(s)yj(s) = σ(χi(s), χj(s))

= σ(χi(0), χj(0)) = yj(0) ·M(0)yi(0)− yi(0) ·M(0)yj(0) = 0 .

On the other hand, by Lemma 3.4 we know that the vectors yi(s0), 0 ≤ i ≤ n form a basis of Cn+1 and
hence, the latter equation implies that M(s) is symmetric for all s ∈ R. �

Lemma 3.6 Let M(s) be given as in the previous lemma. Then for all s ∈ R the matrix ImM(s) is
positive definite on the orthogonal complement of ẋ(s)

Proof. This proof relies on the conservation of the complexified form σC. Fix s0 ∈ R and let y(s0) be an
arbitrary vector in the orthogonal complement of ẋ(s0). In particular, this means that y(s0) is non-zero.
Due to Lemma 3.4 there exist b0, b1, . . . , bn ∈ C such that

y(s0) =

n∑
i=0

biy
i(s0) ,

where yi(s), 0 ≤ i ≤ n are the column vectors of Y (s). Similarly, for ηi(s), 0 ≤ i ≤ n, being the column
vectors of N(s), we introduce

χ(s) =

n∑
i=0

bi
(
yi(s), ηi(s)

)
.

13



As before, one can compute that

σC(χ(s), χ(s)) = 2iy(s) · Im (M(s)) y(s)

for y(s) =
∑n
i=0 biy

i(s). Moreover, if y(0) was of the form y(0) = βẋ(0) for some constant β then we
would get y(s0) = βẋ(s0) as a consequence of Lemma 3.2. However, this contricts our assumption that
y(s0) lies in the orthogonal complement of ẋ(s0). Thus, the vector y(0) cannot be parallel to ẋ(0). Since
M(0) =M is positive definite on orthogonal complement of ẋ(0), it follows that

σC(χ(0), χ(0)) > 0

and hence, by the constancy of the complexified form

2iy(s0) · Im (M(s0)) y(s0) = σC(χ(s0), χ(s0)) = σC(χ(0), χ(0)) > 0 .

As y(s0) was an arbitrary vector orthogonal to ẋ(s0), we deduce that ImM(s) is indeed positive definite
on the orthogonal complement of ẋ(s) for all s ∈ R. �

In conclusion, provided that

Im
∂2ψ

∂xi∂xj
(x(0))

is positive definite on the orthogonal complement of ẋ(0), we can make pm

(
x, ∂ψ(x)

∂x

)
vanish to second

order on Γ. This completes the crucial part of the construction of the phase ψ.

By all means, we may want to require that f(x) = pm

(
x, ∂ψ(x)

∂x

)
vanishes on Γ to higher order than two.

However, it turns out that this gives rise to linear ordinary differential equations with which it is easier
to deal than with the second order condition (3.5). More precisely, for any multi-index α of length r the
equations 0 = ∂αx f along Γ are of the form

0 =
∂pm
∂ξj

∂

∂xj
(∂αxψ) +

∑
|β|=r

cαβ∂
β
xψ + dα , (3.8)

cf. [2], where the coefficients cαβ and dα depend on the partial derivatives up to order r − 1. Since

∂pm
∂ξ
· ∂ (∂αxψ)

∂x
=

d

ds
(∂αxψ)

we can solve the equations (3.8) as a linear system of ordinary differential equations in s. By linearity, there
exists a unique global solution to this system for any initial data. Thus, it suffices to prescribe ∂αxψ(x(0))

for |α| = r to get the rth order partial derivatives of ψ on the whole curve Γ which make pm

(
x, ∂ψ(x)

∂x

)
vanish to rth order. We only need to take care of two things. Firstly, due to the dependency of cαβ and dα
on lower order partial derivatives we need to determine the partials of ψ recursively. Secondly, we need
to ensure that they satsify compatibiliy conditions such as

∂3ψ

∂xi∂xj∂xk
(x(s))ẋk(s) =

d

ds

(
∂2ψ

∂xi∂xj
(x(s))

)
.

However, it suffices to choose the partial derivatives of ψ to be compatible at x(0) as they will then stay
compatible for all s.

Overall, we have established that we can make pm

(
x, ∂ψ(x)

∂x

)
vanish to arbitrary finite order on Γ provided

that
∂ψ

∂x
(x(s)) = ξ(s) ,
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where (x(s), ξ(s)) is the null bicharacteristic curve corresponding to Γ, as well as that

Im
∂2ψ

∂xi∂xj
(x(0))

is positive definite on the orthogonal complement of ẋ(0). Throughout the remainder of this section,

assume that pm

(
x, ∂ψ(x)

∂x

)
vanishes to finite order R on Γ.

Having finished the construction of the phase ψ, we still need to determine the Taylor series of
a0(x), a1(x), . . . , aN (x) along the curve Γ. By going back to our ansatz (3.1), we see that the only powers
of k which P(x,D)u can contain are km, km−1, . . . , k−N+1, k−N . Thus, P(x,D)u is of the form

P(x,D)u =

(
N∑

s=−m
cs(x)k−s

)
eikψ(x)

for coefficients c−m(x), c−m+1(x), . . . , cN (x). We already saw that

c−m(x) = pm

(
x,
∂ψ

∂x

)
a0(x) .

To determine c−m+1(x), we need to have a look at how O(km−1) terms occur in P(x,D)u. One such term
simply arises from the order m− 1 terms in P(x,D), i.e. one contribution to c−m+1(x) is

pm−1

(
x,
∂ψ

∂x

)
a0(x) ,

where pm−1 is the symbol for the terms of order m−1 in P(x,D). Similar to c−m, another term in c−m+1

is given by

pm

(
x,
∂ψ

∂x

)
a1(x) .

The last two terms in c−m+1 arise from all the order k terms in P(x,D) acting on the a0(x) eikψ(x) part
of u(x, k). To get a term of O(km−1) we need k − 1 of the x-derivatives to act on eikψ(x) with the other
derivative acting on the product of a0 and terms obtained by differentiating eikψ(x) with respect to x. In
total, one gets

c−m+1(x) =
1

i

(
∂pm
∂ξj

(
x,
∂ψ

∂x

)
∂a0

∂xj

)
+

(
1

2i

∂2pm
∂ξj∂ξk

(
x,
∂ψ

∂x

)
∂2ψ

∂xj∂xk
+ pm−1

(
x,
∂ψ

∂x

))
a0 (3.9)

+ pm

(
x,
∂ψ

∂x

)
a1

which is of the form

c−m+1(x) = L a0 + pm

(
x,
∂ψ

∂x

)
a1 .

Similarly, it is possible to show that

c−m+r+1(x) = L ar + pm

(
x,
∂ψ

∂x

)
ar+1 + gr , r = 1, . . . , N +m

where gr is a function depending on ψ, a0, . . . , ar−1 and their derivatives and where ar ≡ 0 for r > N .
Thus, determining the partials of a0, a1, . . . , aN along Γ again reduces to solving linear systems of ordinary
differential equations.

From (3.9) we deduce that whenever pm

(
x, ∂ψ∂x

)
vanishes to order R on Γ we can choose the Taylor series

of a0 on Γ up to order R − 2 in such a way that c−m+1(x) vanishes to order R − 2 on Γ. Similarly, we
can choose the Taylor series of ar−1(x) so that c−m+r(x) vanishes up to order R− 2r on Γ.
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This nearly concludes the construction of Gaussian beams. As mentioned right at the beginning of the
section it only remains to multiply u(x, k) by a k-independent function which vanishes outside a small
neighbourhood O of Γ but which is also identically one on a smaller neighbourhood of Γ. This ensures
that u(x, k) really does become concentrated on Γ as k →∞.

Even though we now finished off the construction of Gaussian beams, we still need to justify that we
actually met our original aim (3.2), i.e. we still need to show that u(x, k) is indeed an asymptotic solution
to the partial differential equation P(x,D)u = 0. For this, we make use of the following lemma.

Lemma 3.7 Let T > 0 be given and let c(x) be a function on Rn+1 which vanishes to order S − 1 on
the curve Γ, some S ≥ 2. Suppose both that supp c ∩ {|x0| ≤ T} is compact and that Imψ(x) ≥ ad2(x)
on this set for some constant a > 0, where d(x) denotes the distance from the point x ∈ Rn+1 to Γ. Then
there exists a constant C such that∫

|x0|≤T

∣∣∣c(x) eikψ(x)
∣∣∣2 dx ≤ Ck−S−n/2 .

Proof. In a neighbourhood of Γ∩ {|x0| ≤ T} we can choose k-independent coordinates z0, z1, . . . , zn such
that the curve Γ is parametrised by z0 = s, z1 = 0, . . . , zn = 0 and such that we also have

d2(x(z)) ≥ z2
1 + · · ·+ z2

n . (3.10)

Using these coordinates, we then introduce the k-dependent coordinates y0, y1, . . . , yn given by

y0 = z0 , y1 = k1/2z1 , . . . , yn = k1/2zn .

From (3.10) as well as our assumption on Imψ(x) we deduce that∣∣∣exp
(

ikψ
(
x
(
y0, k

−1/2y1, . . . , k
−1/2yn

)))∣∣∣ ≤ exp
(
−kad2

(
x
(
y0, k

−1/2y1, . . . , k
−1/2yn

)))
≤ exp

(
−a
(
y2

1 + · · ·+ y2
n

))
≤ 1 .

Finally, we want to change from x to y variables in the integral
∫
|x0|≤T

∣∣c(x) eikψ(x)
∣∣2 dx. Since the

Jacobian of the transformation from x to z coordinates is independent of k whereas the Jacobian for
changing variables from z to y is equal to k−n/2, it follows that the new integrand is bounded above by

Ck−n/2
∣∣∣c(x(y0, k

−1/2y1, . . . , k
−1/2yn

))∣∣∣2 exp
(
−2a

(
y2

1 + · · ·+ y2
n

))
≤ Ck−S−n/2

∣∣∣kS/2c(x(y0, k
−1/2y1, . . . , k

−1/2yn

))∣∣∣2
for some constant C. However, by assumption c vanishes to order S− 1 ≥ 1 on Γ and supp c∩{|x0| ≤ T}
is compact. Therefore, ∣∣∣kS/2c(x(y0, k

−1/2y1, . . . , k
−1/2yn

))∣∣∣
remains bounded on supp c ∩ {|x0| ≤ T} as k →∞ and the estimate of the lemma follows. �

By a repeated application of Lemma 3.7, we are now able to estimate the Sobolev s-norm ‖Pu‖s of
P(x,D)u on {|x0| ≤ T}. Since c−m+r(x), r = 0, . . . , N + m, vanishes to order R − 2r on Γ the lemma
yields ∫

|x0|≤T

∣∣∣c−m+r(x)km−r eikψ(x)
∣∣∣2 dx ≤ Ck2(m−r)k−(R+1−2r)−n/2 = Ck2m−(R+1)−n/2

provided we choose the neighbourhood O which was introduced above so that Imψ(x) ≥ ad2(x) for
x ∈ O ∩ {|x0| ≤ T}. By further using the inequality (w1 + w2 + · · · + wl)

2 ≤ 2(w2
1 + w2

2 + · · · + w2
l ), we
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deduce that

‖Pu‖0 =

(∫
|x0|≤T

|Pu|2 dx

)1/2

=

∫
|x0|≤T

∣∣∣∣∣∣
 N∑
j=−m

cj(x)k−j

 eikψ(x)

∣∣∣∣∣∣
2

dx


1/2

≤

2

N∑
j=−m

∫
|x0|≤T

∣∣∣cj(x)k−j eikψ(x)
∣∣∣2 dx

1/2

≤ Dkm−(R+1)/2−n/4 ,

for some k-independent constant D. Noting that differentiating P(x,D)u with respect to x only multiplies
the coefficients cj(x) by k or decreases the order to which they vanish on Γ by at most one, we similarly
prove that

‖Pu‖s ≤ Dkm+s−(R+1)/2−n/4 . (3.11)

Thus, if we choose R large enough then we can indeed achieve our aim (3.2).

We end the general discussions with a remark, whose importance will become clear in the propagation of
singularities section.

Remark 3.8 By going back to the Gaussian beam construction, one sees that it is possible to choose the
phase ψ depending smoothly on (x(0), ξ(0)) as well as on its Taylor series at x(0) up to order R in a way

which makes pm

(
x, ∂ψ∂x

)
vanish to order R on Γ ∩ {|x0| < T}.

Similarly, each ar−1(x) can be chosen as a smooth function of its Taylor series at x(0) to order R− 2r,
the Taylor series of a0(x), . . . , ar−2(x) at x(0) up to orders R− 2, . . . , R− 2(r− 1), respectively, and the
Taylor series of ψ at x(0) to order R.

Finally, one can also establish that the constant C in Lemma 3.7 is uniform both in (x(0), ξ(0)) and in
the Taylor series of ψ and ar−1 up to orders R and R − 2r, respectively, provided that all the data in
consideration lie on a bounded set and that we have a uniform bound on the positive definiteness of

Im
∂2ψ

∂xi∂xj
(x(0))

on the orthogonal complement of ẋ(0).

3.1 The construction for the wave equation

Having discussed the construction of Gaussian beams for a general strictly hyperbolic partial differential
operator P(x,D) we conclude this section by demonstrating the construction for the two-dimensional
wave equation

�u ≡ −∂
2u

∂t2
+
∂2u

∂x2
1

+
∂2u

∂x2
2

= 0 .

To be consistent with the notation used in the first part of this section, we again replace t by x0. The
corresponding principal symbol is then

p2(x, ξ) = −ξ2
0 + ξ2

1 + ξ2
2 .

First, we note that the wave equation is indeed strictly hyperbolic because for any fixed (ξ1, ξ2) 6= 0 the
polynomial

g(ξ0) = −ξ2
0 + ξ2

1 + ξ2
2

has two distinct real roots, as required. Thus, we can construct Gaussian beams along its null bicharac-
eristic curves. They are given as solutions of

ẋ0 = −2ξ0, ẋi = 2ξi, i = 1, 2, and ξ̇ = 0
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subject to the additional condition p2(x(s), ξ(s)) = 0. From ξ̇ = 0 we deduce that ξ0, ξ1 and ξ2 need to
be constant along any bicharacteristic curve, which further implies that x(s) is of the form

x(s) = (−2ξ0s, 2ξ1s, 2ξ2s) .

For instance, the curve

(x(s), ξ(s)) =

(
s, 0, s,−1

2
, 0,

1

2

)
is a bicharacteristic which is clearly null.

We now restrict our attention to this specific null bicharacteristic curve and construct a Gaussian beam
along its projection Γ which is given by (s, 0, s). Let us make the ansatz

u(x, k) = eikψ(x) a0(x) (3.12)

and as in the general construction, start by determining conditions on the phase ψ. We have already
ensured that (x(s), ξ(s)) is a null bicharacteristic curve. Furthermore, we need to satisfy

∂ψ

∂x
(x(s)) = ξ(s) , i.e.

∂ψ

∂x
(s, 0, s) =

(
−1

2
, 0,

1

2

)
(3.13)

as well as condition (3.6) which reduces to

0 = MCM +
dM

ds
for C =

−2 0 0
0 2 0
0 0 2

 .

To solve the latter for

(M(s))ij =
∂2ψ

∂xi∂xj
(x(s))

we first need to choose an appropriate symmetric matrix M(0). On the one hand, it needs to obey

M(0)ẋ(0) = ξ̇(0) , i.e. M(0)

1
0
1

 =

0
0
0


and on the other hand, we also want ImM(0) to be positive definite on the orthogonal complement of
ẋ(0) = (1, 0, 1), which is spanned by (0, 1, 0) and (−1, 0, 1). It is straightforward to check that

M(0) =

 bi 0 −bi
0 ai 0
−bi 0 bi


is an admissible choice provided the constants a and b are both positive. To find the matrix M(s) it then
remains to solve the linear system

Ẏ = CN , Ṅ = 0

with initial data (Y (0), N(0)) = (I,M(0)). From Ṅ = 0 we get N(s) = N(0) = M(0). Plugging this into
the first differential equation gives Ẏ = CM(0) whose solution is

Y (s) = Y (0) + sCM(0) = I + sCM(0) .

Thus, we obtain
M(s) = N(s)Y −1(s) = M(0) (I + sCM(0))

−1
. (3.14)
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From the general discussion, we know that p2

(
x, ∂ψ(x)

∂x

)
will vanish to at least second order on Γ if we

choose the phase ψ such that (3.13) and (3.14) are satisfied. An example of a function ψ with proper 1st

and 2nd partials on (s, 0, s) is

ψ(x0, x1, x2) =
x2 − x0

2
+

a2x0x
2
1

1 + 4a2x2
0

+ i

((
a

1 + 4a2x2
0

)
x2

1

2
+
b(x2 − x0)2

2

)
. (3.15)

In fact one can check that with this choice of phase, p2

(
x, ∂ψ(x)

∂x

)
vanishes even to third order on Γ.

We now still need to determine the a0(x) in our ansatz (3.12). As in the general construction, we use
c−2+1(x) = c−1(x) to find a function a0(x) which works. For j = 0, 1, 2 we compute

∂u

∂xj
= eikψ ∂a0

∂xj
+
∂ψ

∂xj
ik eikψ a0

and
∂2u

∂x2
j

= eikψ ∂
2a0

∂x2
j

+ 2ik
∂ψ

∂xj

∂a0

∂xj
eikψ +ik

∂2ψ

∂x2
j

eikψ a0 − k2

(
∂ψ

∂xj

)2

eikψ a0 .

Collecting the terms in front of k then yields

c−1(x) =

2∑
j=0

(
2i
∂ψ

∂xj

∂a0

∂xj
eikψ +i

∂2ψ

∂x2
j

eikψ a0

)
.

Due to

∂ψ

∂x
(s, 0, s) =

(
−1

2
, 0,

1

2

)
as well as

da0

ds
(s, 0, s) =

∂a0

∂x0
(s, 0, s) +

∂a0

∂x2
(s, 0, s)

it follows that c−1(x) vanishes on (s, 0, s) if and only if

da0

ds
− (�ψ) a0 = 0 (3.16)

holds on Γ. Since �ψ = −ia (1 + 2ais)
−1

for the phase ψ as given in (3.15), we can use separation of
variables to solve (3.16) for a0(x(s)). If we take a0(x(0)) = 1 this simply yields

a0(x(s)) = (1 + 2ais)−1/2 , (3.17)

where the branch of the square root is chosen so that we really do have a0(x(0)) = 1. This fixes the
function a0(x) on all of Γ. However, we need a0(x) to be defined globally or at least on a neighbourhood
of Γ. A choice of a0(x) which is consistent with (3.17) is

a0(x0, x1, x2) = (1 + 2aix0)−1/2 .

One can check that this makes c−1(x) vanish to first order on Γ, which is exactly what we need as

p2

(
x, ∂ψ(x)

∂x

)
vanishes to third order on (s, 0, s). Finally, from (3.11) it follows immediately that

‖�u(x, k)‖0 = ‖ eikψ(x) a0(x)‖0 ≤ Dk2+0−(3+1)/2−2/4 = Dk−1/2 = O(k−1/2) .

Thus, we found functions ψ(x) and a0(x) turning (3.12) indeed into an asymptotic solution of the wave
equation which becomes concentrated on the curve (s, 0, s) as k →∞.
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4 Reflections

We have seen so far that we can construct a Gaussian beam on Rn+1 satisfying the smallness criterion

‖Pu‖s ≤ Ck
m+s−(R+1)/2−n/4. (4.1)

In this section we want to consider boundary effects. Let therefore Ω be a bounded domain in Rn with
smooth boundary and D := R × Ω. For i = 1, . . . , l, let Bi be a linear differential operator of order mi

with principal symbol bi and impose the boundary conditions

Biu = 0 (4.2)

on ∂D = R× ∂Ω. If a ray path x(s) hits ∂D at x(s0), then the Gaussian beam shall be reflected at x(s0)
according to the boundary conditions. For the reflected Gaussian beam, we start with the ansatz

u = eikψ
(
a0 + . . .+

aN
kN

)
+

l∑
j=1

eikψj

(
aj0 + . . .+

ajN
kN

)
, (4.3)

where the first summand is given by the construction in the previous section. To carry out the construction
for the reflected beam, we need to make two essential assumptions.

Assumption 1 (Non-grazing hypothesis) Let ν = (0, ν′) denote the inner unit normal to ∂D at
x(s0). We assume that

t 7→ pm(x(s0), ξ(s0) + tν) (4.4)

has m distinct roots in the complex plane.

Note that 0 is always a root because (x(s0), ξ(s0)) is a bicharacteristic.

Example 4.1 When dealing with the wave operator � it becomes evident why this assumption is called
the “non-grazing hypothesis”. Letting p2 denote the corresponding principal symbol and using the notation
ξ = (ξ0, ξ

′), we have

p2(x(s0), ξ(x0) + tν) = −|ξ0(s0)|2 + |ξ′(s0) + tν′|2 (4.5)

= p2(x(s0), ξ(s0)) + 2tξ′(s0) · ν′ = t(t+ 2ξ · ν) (4.6)

since p2(x(s), ξ(s)) = 0 for all s. Thus the assumption is equivalent to ξ(s0) · ν 6= 0, i. e. ν · ẋ(s0) 6= 0,
which does not allow for beams hitting the boundary tangentially.

Remark 4.2 For all operators P , the non-grazing hypothesis implies

ν · ẋ(s0) = ν · ∂pm
∂ξ

(x(s0), ξ(s0)) 6= 0. (4.7)

but is not necessarily equivalent to this.

Denote the real roots of (4.4) such that[(
ν · ∂pm

∂ξ

)(
∂pm
∂ξ0

)]
(x(s0), ξ(s0) + τν) > 0. (4.8)

by τi, i = 1, . . . , k0. All purely complex roots appear in conjugate pairs. Label all purely complex roots
with Imτj > 0 by j ∈ {k0, . . . , (m− k)/2}.

Assumption 2 Define a matrix b with components

bij = bi(x(s0), ξ(s0) + τjν) (4.9)

for i = 1, . . . , l, j = 1, . . . , k0 + (m − k)/2. We assume that rank b = l. Moreover, we assume that the
number of boundary conditions is l = k0 + (m− k)/2.
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Let 1 ≤ j ≤ k0. Since ∂pm
∂ξ (x(s0), ξ(s0) + τjν) ∈ R, we can define the bicharacteristic curve

Γj : s 7→ (x(s), ξ(s)) (4.10)

starting at (x(s0), ξ(s0) + τjν) via

ẋ =
∂pm
∂ξ

, ξ̇ = −∂pm
∂x

. (4.11)

Lemma 4.3 The ray path Γj moves forward in time, i. e. x0 > x0(s0) on Γj in D.

Proof. In terms of the bicharacteristics defined above, equation (4.8) reads as

(ν · ẋ(s0))ẋ0(s0) > 0. (4.12)

Thus Γj enters D as x0 increases. Strict hyperbolicity implies that

ẋ0(s) =
∂pm
∂ξ0

(x(s), ξ(s)) 6= 0 (4.13)

and thus x0 > x0(s0) on Γj in D. �

Remark 4.4 Note that if x0(s) decreases as s increases, we follow the ray path backwards in s.

Lemma 4.5 Assume 1 ≤ j ≤ k0. Let ψ = ψj on ∂D and

∂ψj
∂x

(x(s)) = ξ(s). (4.14)

Then the function ψj can be chosen so that pm(x, ∂ψj/∂x) vanishes to order R on the curve Γj with(
Im

∂ψj
∂xi∂xk

(x(s))

)
i,k

(4.15)

positive definite on the orthogonal complement of ẋ(s).

Remark 4.6 Note that our requirement on ∂ψj/∂x is compatible with ψ|∂D = ψj |∂D since ξ(s0) =
ξ(s0) + τjν.

Proof. First observe that the compatibility condition

n∑
i=0

∂|α|+1ψj
∂xα∂xi

(x(s0))
∂pm
∂ξi

(x(s0), ξ(s0) + τjν) =
d

ds

∂|α|ψj
∂xα

(x(s))|s=0 (4.16)

holds for the αth derivative of ψj at x(s0). In particular, this implies that ψ(x(s)) ∈ R by (4.14). As(
Im

∂2ψ

∂xi∂xk
(x(s))

)
i,k

(4.17)

is positive definite on vectors orthogonal to ẋ(s), but zero tangential to Γ, we find that(
Im

∂2ψ

∂xi∂xk
(x(s0))

)
i,k

(4.18)

is positive definite on the tangential plane to ∂D on x(s0) which is not tangential to the curve by (4.7).
Since ψj = ψ on ∂D, (

Im
∂2ψj
∂xi∂xk

(x(s0))

)
i,k

(4.19)
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is also positive definite on this plane. We have already established that ψ(x(s)) ∈ R for all s, thus(
Im(∂2ψj/∂xi∂xk)x(s0))

)
i,k

= 0 on vectors parllel to ẋ. Therefore we conclude that(
Im

∂2ψj
∂xi∂xk

(x(s0))

)
i,k

(4.20)

is positive definite on the plane orthogonal to Γj by the non-grazing condition

ν · ẋ(s0) = ν · ∂pm
∂ξ

(x(s0), ξ(s0) + τjν) =
dpm
dt

(x(s0), ξ(s0) + τjν) 6= 0. (4.21)

Now it is possible to perform the same construction we used to find ψ in the previous section to construct
ψj such that

pm

(
x,
∂ψj
∂x

)
= 0 (4.22)

vanishes to order R on Γj . Since (4.21) holds, equation (4.16) enables us to always express a derivative
in ν direction by other derivatives. This was not an issue in the original construction since we started the
Gaussian beam at the time slice {x0 = 0} so that the analogue of (4.21) was given by x0(s0) 6= 0. �
To determine ψj for k0 + 1 ≤ j ≤ k0 + (m− k)/2 we can exploit a more direct approach.

Lemma 4.7 Let j > k0 and assume ψj = ψ on ∂D with

∂ψj
∂x

(x(s0)) = ξ(s0) + τjν. (4.23)

Then we can construct ψj such that pm(x, ∂ψj/∂x) = 0 to order R. Moreover the Taylor series of ψj
around x(s0) is determined uniquely and there is a c > 0 and a neighbourhood U ⊆ D of x(s0) such that

Imψj(x) ≥ c|x− x(s0)|2 (4.24)

for all x ∈ U .

Proof. If pm(x, ∂ψj/∂x) = 0 up to order R and |α| ≤ R, we have the expression

0 =

n∑
i=0

∂|α|+1ψj
∂xα∂xi

(x(s0))
∂pm
∂ξi

(x(s0),
∂ψj
∂x

(x(s0))) + qα(x(s0)), (4.25)

where qα is a function depending only on ∂|β|ψj/∂x
β for |β| ≤ |α|.

Since ψj = ψ on the boundary and

ν · ∂pm
∂ξ

(x(s0), ξ(s0) + τjν) 6= 0 (4.26)

by the non-grazing condition, this determines the Taylor series uniquely.
For the rest of the proof, assume that near x(s0) the domain D is locally defined by xn and x(s0) = 0.
Then

Im
∂ψj
∂x

(x(s0)) = (0, . . . , 0, Imτj) (4.27)

and (
Im

∂2ψj
∂xi∂xk

(x(s0))

)
i,k

=

(
Im

∂2ψ

∂xi∂xk
(x(s0))

)
i,k

=: A (4.28)
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for 0 ≤ i, k ≤ n− 1. Using the notation x = (x′, xn), this yields

Imψj = (Imτj)xn +
1

2
x′ ·Ax′ + xnK · x′ +O(x2

n) +O(|x− x(s0)|3). (4.29)

Since A is positive definite and Imτj > 0, xn(Imτj −K) > 0 for |x′| < Imτj/|K|. Hence, for |x − x(s0)|
small enough, there is a constant c > 0 such that Imψj(x) satisfies the inequality stated above. �
It remains to construct the coefficients aj0, . . . , a

j
N . For u satisfying the ansatz (4.3), we will write

Pu =

N∑
r=−m

crk−r eikψ +

l∑
j=1

cjrk
−r eikψj

 . (4.30)

Since ψ = ψj on ∂D, we get

Bju =

N∑
r=−mj

djr(x)k−r eikψ . (4.31)

Lemma 4.8 One can choose the Taylor series of aj0, . . . , a
j
N such that such that dj−mj+s vanishes to order

R− 2s on ∂D and cj−m+s(x) vanishes on Γj to order R− 2s for j ≤ k0 and cj−m+s(x) vanishes to order
R− 2s at x(s0) for j > k0.

Proof. Using the ansatz (4.3) and assuming that Bj is of order mj , we get

Bju =

N∑
r=−mj

djr(x)k−r eikψ (4.32)

for j = 1, . . . , l on ∂D with

dj−mj
= bj

(
x,
∂ψ

∂x

)
a0 + bj

(
x,
∂ψ1

∂x

)
a1

0 + . . .+ bj

(
x,
∂ψl
∂x

)
xl0 (4.33)

= bj

(
x,
∂ψ

∂x

)
a0 +

l∑
i=1

bjia
i
0 (4.34)

and, for s ≥ 1,

dj−mj+s = bj

(
x,
∂ψ

∂x

)
as + bj

(
x,
∂ψ1

∂x

)
a1
s + . . .+ bj

(
x,
∂ψl
∂x

)
als + gjs (4.35)

= bj

(
x,
∂ψ

∂x

)
as +

l∑
i=1

bjia
i
s + gjs, (4.36)

where gjs is a function of ar, a
1
r, . . . , a

l
r for r = 0, . . . , s − 1 and their derivatives. Since b is invertible,

dj−mj+s vanishing to order R− 2s determines the Taylor series of ajs uniquely up to order R− 2s.
For 1 ≤ j ≤ k0, we can use the method described in the previous section to chose the Taylor series of
aj0, . . . , a

j
N on Γj such that cj−m+s vanishes to order R− 2s on Γj .

For j > k0, we use the analogue for cj−mj+s of equation (4.25) ot show that cj−mj+s vanishes to order
R− 2s at x(s0). �
As in the previous construction, the approximation is finished once we multiply the terms by suitable
bump functions in order to localise the solutions in space.

Theorem 4.9 The above construction gives

‖Pu‖s ≤ Ck
m+s−(R+1)/2−n/4 (4.37)
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and

|||Biu|||s′ ≤ C
′kmj+s′−(R+1)/2−n/4 (4.38)

where |||·|||s′ denotes the Sobolev norm of order s′ on ∂D ∩ {|x0| < T}.

Proof. One can modify Lemma 3.7 to see that the contributions of∥∥∥∥∥P eiψj

(
aj1 + . . .+

ajN
kN

)∥∥∥∥∥
s

(4.39)

for l > k0 are of higher order in 1/k than than for l ≤ k0. For the latter (and for |||Biu|||s′) we can use
the results from the previous section. �

Remark 4.10 The constants in the inequalities are uniform for y = x(0) and η = ξ(0) in a neighbourhood
of an admissible value as in the previous section, although now this neighbourhood might have to be small
to avoid grazing.

Remark 4.11 By Lemma 4.3 all ray paths go forward in time and, since we multiplied with suitable bump
functions, none of these modifications made by us in this chapter to account for the boundary conditions
will influence the initial values at x0 = 0.
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5 Propagation of Singularities

One of the main differences between hyperbolic and, say elliptic, partial differential equations is (as-
suming all differential operators have infinitely differentiable coefficients) that they may admit solutions
which fail to be smooth. The notion of propagation of singularities arises when one studies that points
at which solutions of hyperbolic PDEs are not infinitely differentiable. The term propagation refers to
the way in which singularities at a given time t0 translate to singularities at later times.

The Gaussian beam construction for strictly hyperbolic partial differential operators provides asymptotic
solutions to the related PDEs which are concentrated near ray paths, or projections of null bicharacteristic
curves. It turns out that one can use the construction, for an operator P , to prove that singularities in
solutions of Pu = f can only propagate along these paths. To demonstrate this, consider the operator
Pu = ∂u

∂t : the solutions of Pu = 0 are the functions u which are independent of t. This means that there
exist solutions which vanish away from lines {(x0, t), t ∈ R} for fixed x0 ∈ Rn, and clearly in this case
the singularities of the solutions propagate along these lines.

The idea of a singularity of a distribution can be refined by studying what is known as its wave front set, a
concept introduced by Hörmander in [1]. As is now standard we will give our propagation of singularities
result in terms of wave front sets, and so the following section will consist of a brief introduction to the
idea and underlying theory.

5.1 Wave Front Sets

5.1.1 Fourier Transforms

The key motivation for the definitions that follow, is that for an integrable function on Rn we have a rela-
tionship between smoothness, and decay of the Fourier transform at infinity. This essentially arises from
the fact that for any f which is sufficiently nice, we have (Dα

xf )̂(ξ) = ξαf̂(ξ) and (xβf )̂(ξ) = (−Dλ)β f̂(ξ)
where α and β are multi-indices, and for computational ease we write Dα = −i∂α. In fact, as we will see
shortly, we can characterize smoothness of a function f in terms of bounds on f̂ . This characterization
can be extended to distributions f ∈ D′(Rn), and motivates the definition of the wave front set in terms
of bounds on the Fourier transform.

More precisely, given f ∈ L1(Rn) we define its Fourier transform by

f̂(ξ) =
1

(2π)n/2

∫
Rn

e−ix.ξ f(x) dx

and have the folowing results:

Lemma 5.1 If f ∈ C∞0 (Rn) then for each N ∈ N there is a CN such that

|f̂(ξ)| ≤ CN (1 + |ξ|)−N . (5.1)

Proof. This follows from the fact that if f ∈ C∞0 (Rn) then

(1 + |ξ|2)M f̂(ξ) = (2π)−n/2
∫
Rn

e−ix.ξ(1−∆)Mf(x) dx.

which holds since

((1−∆)Mf )̂(ξ) =

∫
e−ix.ξ(1−∆)Mf(x) dx (5.2)

=

∫
Rn

f(x)(1−∆)M e−ix.ξ dx (5.3)

= (1 + |ξ|2)M
∫
Rn

f(x) e−ix.ξ dx (5.4)

= (1 + |ξ|2)M f̂(ξ) (5.5)
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and the 2nd line follows by integration by parts, since the boundary terms disappear for f compactly
supported.

From here, writing

f̂(ξ) = (1 + |ξ|2)−2M (1 + |ξ|2)2M f̂(ξ) = (1 + |ξ|2)−2M ((1−∆)Mf )̂(ξ)

yields the result, since f ∈ C1
0 (Rn) implies that (1 −∆)Mf ∈ L1 and so ((1−∆)Mf )̂(ξ) is bounded by

a constant depending only on M . �

Lemma 5.2 If f, f̂ ∈ L1 and f̂ obeys the estimates (5.1) then f(x) ∈ C∞(Rn).

Proof. Since f, f̂ are both in L1 the Fourier inversion formula cite[Theorem 9.11]rudin

f(x) = (2π)n/2
∫
Rn

eix.ξ f̂(ξ) dξ a.e.

holds. Then for any multi-index β

(−Dx)βf(x) = (2π)−n/2
∫
Rn

(−Dx)β e−ix.ξ f̂(ξ) dξ (5.6)

= (2π)−n/2
∫
Rn

xβ f̂(ξ) e−ix.ξ, dξ (5.7)

= (2π)−n/2(xβ f̂ )̂(ξ) (5.8)

where the estimates on f̂ justify differentiating under the integral in line 1. The final expression is
continuous as xβ f̂ ∈ L1 (another consequence of the bounds (5.1)) and thus has continuous Fourier
transform. We have shown that all derivatives of f are continuous, and so have f ∈ C∞(Rn) as required.

�

Theorem 5.3 (Characterisation of Smoothness) A function f ∈ L1
loc(Rn) is equivalent to a smooth

function in a neighbourhood of x0 if and only if there is a non-negative function ρ ∈ C∞0 (Rn) with
ρ(x0) = 1 such that

ρ̂f(ξ)

satsifies the estimates (5.1).

Proof. Assume that there exists such a ρ. Then ρf ∈ L1 (since f ∈ L1
loc) and ρ̂f ∈ L1 also, as a result

of the estimates (5.1). By Lemma 5.2 this means that ρf ∈ C∞(Rn) and so f is equivalent to a C∞

function on a neighborhood of x0.

Conversely, if f is equivalent to a C∞ function on a neighborhood of x0 then building ρ non-negative
and smooth, supported on this neighbourhood (wlog assume it is compact) such that ρ(x0) = 1 gives

that ρf ∈ C∞0 (Rn). Then ρ̂f satisfies the estimates (5.1) by previous work. �

As mentioned before, this characterization can be extended to distributions f ∈ D′(Rn).

Say that f ∈ D′(Rn) is equivalent to a C∞ function g on a neighbourhood O ⊂ Rn if for all ϕ ∈ D(O)

〈f, ϕ〉 =

∫
Rn

gϕ dx

and for ρ ∈ C∞0 (Rn) = D(Rn) define

ρ̂f(ξ) =
〈
f, ρ e−ix.ξ

〉
. (5.9)

Note that if f ∈ D(Rn) this corresponds to the Fourier transform of ρf as before. With this set up, we
obtain the corresponding theorem:
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Theorem 5.4 f ∈ D′(Rn) is equivalent to a C∞ function on a neighbourhood of x0 if and only if there

exists ρ as before, with ρ̂f(ξ) satisfying the estimates (5.1).

Proof. Suppose such a ρ exists, then 〈fρ, ϕ〉 = 〈f, ρϕ〉 defines an element fρ of E ′(Rn) (since ρ is compactly

supported.) Its Fourier transform f̂ρ ∈ S ′(Rn) is in fact a function satisfying

f̂ρ(ξ) =
〈
fρ, e−ix.ξ

〉
∀ξ

since we have, for all ϕ ∈ S(Rn) 〈
f̂ρ, ϕ

〉
= 〈fρ, ϕ̂〉 (5.10)

=

〈
fρ,

∫
Rn

e−ix.ξ ϕ(ξ) dξ

〉
(5.11)

=

∫
Rn

〈
fρ, e−ix.ξ

〉
ϕ(ξ) dξ (5.12)

where the final line is justified by the fact that fρ is compactly supported. Note that this, along with
definition (5.9), means that

f̂ρ(ξ) = ρ̂f(ξ)

for all ξ.

Now, since fρ ∈ S ′(Rn) (E ′(Rn) is a subset of this space) the Fourier inversion formula for S ′(Rn) holds,
that is (see [4])

(2π)nf̌ρ =
̂̂
fρ

where for ϕ ∈ D(Rn), ϕ̌(x) = ϕ(−x) and for g ∈ D′(Rn), ǧ is defined by 〈ǧ, ϕ〉 = 〈g, ϕ̌〉.

The Fourier transform of f̂ρ must satisfy, for all ϕ ∈ S(Rn)〈̂̂
fρ, ϕ

〉
=

〈
f̂ρ, ϕ̂

〉
(5.13)

=

∫
Rn

f̂ρ(ξ)ϕ̂(ξ) dξ (5.14)

=

∫
Rn

∫
Rn

f̂ρ(ξ) e−ix.ξ ϕ(x) dxdξ (5.15)

=

∫
Rn

(∫
Rn

f̂ρ(ξ) e−ix.ξ dξ

)
ϕ(x) dx (5.16)

where the final line uses Fubini’s theorem, justified by the bounds (5.1) on ρ̂f(ξ) = f̂ρ(ξ).

The same bounds give that
∫
Rn f̂ρ(ξ) e−ix.ξ dξ is a C∞ function of x (as in the proof of Lemma 5.2) and

so
̂̂
fρ = (2π)nf̌ρ, satisfies 〈

(2π)nf̌ρ, ϕ
〉

=

∫
Rn

gϕ dx

for some C∞ function g, and all ϕ ∈ D(Rn). Clearly this implies we have the same result for fρ, with
corresponding smooth function g′.

Finally, since 〈fρ, ϕ〉 = 〈f, ρϕ〉 for all ϕ, we can deduce the existence of a function g̃ such that for all ϕ
supported in O ⊂ supp(ρ), a neighborhood of x0,

〈f, ϕ〉 =

∫
Rn

g̃ϕ dx
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ie. f is equivalent to a C∞ function in this neighbourhood.

Conversely, assume f is equivalent to a C∞ function on O a neighborhood of x0, so there exists some
function g ∈ C∞(Rn) such that

〈f, ϕ〉 =

∫
Rn

gϕ

for all ϕ ∈ D(O). Construct ρ ∈ D(Rn) non-negative with ρ(x0) = 1 and supp(ρ) ⊂ O. Then

ρ̂f(ξ) =
〈
f, ρ e−ix.ξ

〉
(5.17)

=

∫
Rn

g(x)ρ(x) e−ix.ξ dx (5.18)

= (gρ)̂(ξ) (5.19)

where gρ ∈ C∞0 (Rn) since both are smooth and ρ is compactly supported. Hence, by previous work,

ρ̂f(ξ) = (gρ)̂(ξ) satisfies (5.1) as required. �

5.1.2 Definition

With this characterisation of smoothness in mind, we are ready to define the wave front set of a distri-
bution on Rn. Recall that the singular support of a distribution is defined by

sing supp(f) = Rn \
⋃
O open

f≡g smooth onO

O.

This is the complement of the largest open set on which f is equivalent to a smooth function, so contains
all the singularities of f . The wave front set of f , WF (f), is a refinement of the singular support in the
sense that it tells us not only where f fails to be smooth but also in which directions.

Definition 5.5 Let f ∈ D′(Rn) and (x0, ξ0) ∈ Rn ×Rn \ {0}. Say (x0, ξ0) /∈WF (f) if and only if there

exists ρ ∈ C∞0 (Rn) with ρ(x0) = 1 and a conic neighbourhood N of ξ0 such that ρ̂f(ξ) satistfies (5.1) for
all ξ ∈ N .

Remark 5.6 We say an open set N is conic if ξ ∈ N ⇒ tξ ∈ N for all t > 0.

Note that that Theorem 5.4 tells us that if x0 ∈ Rn is not in the singular support of f , then f is smooth

in a neighbourhood of x0 and there must exist ρ ∈ C∞0 (Rn) non-negative with ρ(x0) = 1 such that ρ̂f(ξ)
satisfies the estimates (5.1) for all ξ. Thus for every ξ0 ∈ Rn \ {0} we can find a conic neighbourhood N

of ξ0 such that ρ̂f(ξ) satisfies the estimates whenever ξ ∈ N . This gives us that (x0, ξ0) /∈WF (f) for all
ξ0 ∈ Rn \ {0}.

Conversely, if this statement holds at x0, then in particular for each ξ ∈ Sn−1 there exists some ρξ

satisfying the usual properties, and Nξ a conic neighbourhood of ξ, such that |ρ̂ξf(η)| ≤ CN (1 + |η|)−N
for all η ∈ Nξ. The neighbourhoods Nξ, for ξ ∈ Sn−1, restrict to open neighbourhoods on the sphere

and thus form an open cover of Sn−1. By compactness, there must exist a finite subcover {Ñ1, · · · Ñk} of
Sn−1, where these sets correspond to conic neighbourhoods {N1, · · ·Nk} of points {ξ1, · · · ξk} respectively.

Note that for each pair (xi, Ni) we also have ρi ∈ C∞0 (Rn) such that ρ̂if(ξ) satisfies (5.1) whenever
ξ ∈ Ni. Since all the ρi’s are smooth, compactly supported, non-negative and equal to 1 at x0, the
function ρ = ρ1 × · · · × ρk also satisfies these properties. Moreover, for every ξ ∈ Rn \ {0}, we have that
ξ
|ξ| ∈ S

n−1 and so ξ
|ξ| ∈ Ñi for some i ∈ [1, · · · , k]. In particular, ξ

|ξ| ∈ Ni and since each Ni is conic, it

must be that ξ ∈ Ni also.
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Since
∣∣∣ρ̂ifη∣∣∣ ≤ CN (1 + |η|)−N for all η ∈ Ni, a conic neighbourhood of ξ, there must also exist a further

conic neighbourhood N of ξ such that the same estimates hold for
{
ρ̂f(η) : η ∈ N

}
. This is true because

ρ = ψiρi with ψi =
∏
j 6=i ρj smooth, and from here we can apply an argument that will be detailed

shortly in the proof of Theorem 5.9. So for arbitrary ξ ∈ Rn \ {0} we have a conic neighbourhood N ′ξ of ξ

such that ρ̂f(η) satisfies estimates of the form (5.1) for η ∈ N ′ξ. Though the constants in these estimates

may depend on ξ, we can apply the same trick as above (finding a finite subcover of Sn−1) to obtain

global constants CN such that ρ̂f(ξ) ≤ CN (1 + |ξ|)−N for all ξ ∈ Rn \{0}. Hence, by our characterisation
of smoothness (Theorem 5.4) it follows that f is smooth in a neighbourhood of x0, ie. x0 /∈ singsupp(f).

Putting this together we obtain:

Lemma 5.7
x ∈ singsupp(f)⇔ (x, ξ) ∈WF (f) for some ξ ∈ Rn \ {0}

so the wave front set is indeed a refinement of the singular support.

Remark 5.8 In the discussion of the previous section, the bounds |f̂(ξ)| ≤ CN (1+ |ξ|)−N were only used
to deal with the behaviour of the Fourier transform for large values of |ξ|. Therefore, we could equivalently
replace these with bounds of the form

|f̂(ξ)| ≤ CN |ξ|−N for |ξ| ≥ 1. (5.20)

Indeed we will use this type of estimate in the sequel, to determine whether or not certain points lie in
the wave front set of a given distribution.

To justify this formally, note that for f ∈ D′(Rn) and ρ ∈ C∞0 (Rn), |ρ̂f(ξ)| is uniformly bounded in ξ,
and so since

(1 + |ξ|)−N ≥ 2−N for |ξ| ≤ 1 and(
|ξ|

1 + |ξ|

)−N
≤ 2N for |ξ| ≥ 1,

given the estimates
(∣∣∣ρ̂f(ξ)

∣∣∣ ≤ CN |ξ|−N) for |ξ| ≥ 1 we may deduce estimates of the form (5.1).

5.1.3 Examples

In this section, some examples of wave front sets will be presented, in order to give a more intuitive idea
of what they are and how they can be determined.

To begin, we’ll consider a canonical example: the dirac delta function δ0. Lemma 5.7 tells us immediately
that (x, ξ) /∈ WF (δ0) unless x = 0, since δ0 is clearly equivalent to a smooth function in the rest of Rn,
and so we need only focus on this point. By symmetry, it is natural to think of δ0 as being singular in all
directions at the origin, and indeed the wave front set reflects this. We have:

WF (δ0) = {(0, ξ) : ξ 6= 0}.

One can verify this statement easily, since for all ρ ∈ C∞0 (Rn) with ρ(0) = 1

ρ̂δ0(ξ) =
〈
δ0, ρ e−ix.ξ

〉
= ρ(0) = 1

which does not decay in any direction.

A slightly more interesting example, when directions are clearly distinguished, is the distribution u =
δ{x2=0} in R2 say, so

〈u, ϕ〉 =

∫
ϕ(x1, 0) dx1

29



for all ϕ ∈ C∞0 (R2). Clearly WF (u) = {(x1, 0) : (ξ1, ξ2)} for some {(ξ1, ξ2) 6= 0} by considerations
of smoothness and one might also guess, since singularities occur as you cross the x1 axis, that the
directions {(ξ1, ξ2)} in the wave front set are those normal to it. With this in mind, the jump of u across
the x1-axis can be thought of as a wave front of the distribution, hence the title.

The above intuition can be substantiated formally, since for any suitable ρ with ρ(x) = 1 for some
x = (x1, 0) we have

〈
f, ρ e−ix.ξ

〉
=

∫
R
ρ(x1, 0) e−ix1ξ1 dx1

= ρ̂(ξ1, 0)

where ρ̂(ξ1, 0) is the Fourier transform of φ(·, 0) in the x1 variable. But this is less than or equal to
|ξ1|−NCN for all N if and only if ξ1 6= 0, so we have

WF (u) = {((x1, 0), (0, ξ2)) : ξ2 6= 0}

as expected.

We can extend this idea to show that for D a domain in Rn with smooth boundary ∂D, the indicator
function χD of D has

WF (χD) = {(x, ξ) : x ∈ ∂D, ξ normal to ∂D}

and more generally, that if f ∈ L1
loc is smooth up to a surface Σ = {x : φ(x) = 0 , φ ∈ C∞(Rn)} from

both sides then

WF (f) ⊂
{

(x, ξ) : x ∈ Σ, ξ = t
∂φ

∂x
(x), t ∈ R \ {0}

}
.

To prove this, you simply choose local coordinates which reduce the problem to the case of a function
jumping over a hypersurface of the form {x ∈ Rn : x1 = 0} and from here the relevant fourier transforms
can be calculated and estimated easily.

However, one must be careful with more complicated distributions. For example, if you consider the
wavefront set of χS where S = {|x1| ≤ 1, |x2| ≤ 1} ⊂ R2 is a square (so without a smooth boundary)
you discover that it consists of points (x, ξ) with x on the interior of an edge and ξ normal to the edge
as usual, but also of the corner points x with corresponding ξ taking any direction!

5.1.4 Effect of Partial Differential Operators

In order to discuss propagation of singularities, in particular to study WF (u) for u a solution to some
partial differential equation, we must first consider how applying a linear partial differential operator
affects the wave front set of a distribution. If the operator has smooth coefficients we have the following
pleasing result:

Theorem 5.9 If P is a linear partial differential operator with smooth coefficients and f ∈ D′(Rn), then

WF (Pf) ⊂WF (f).

Proof. We will begin by considering the effect of multiplication by a smooth funtion ψ ∈ C∞(Rn).
Once we have shown that WF (ψf) ⊂ WF (f) the extension to arbitrary linear operators with smooth
coefficients is relatively straightforward.

Assume (x0, ξ0) /∈ WF (f), so we would like to show that (x0, ξ0) /∈ WF (ψf). By definition, there exists

ρ ∈ C∞0 (Rn) and N a conic neighbourhood of ξ0 such that ρ̂f(ξ) satisfies (5.1) for ξ ∈ N . Taking
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ρ′ ∈ C∞0 (Rn) with ρ′ = 1 on supp(ρ) and letting ψ′ = ρ′ψ we have

ρ̂(ψf)(ξ) = ψ̂′ρf(ξ) (5.21)

= ρ̂f ? ψ̂′ (5.22)

= (2π)
−n/2

∫
Rn

ψ̂′(η)ρ̂f(ξ − η) dη (5.23)

where the first line holds since ψ = ψ′ on supp(ρ) and the second follows from the convolution formula

f̂ ? g(ξ) = f̂(ξ)ĝ(ξ).

If f ∈ L1
loc then |ρ̂f(ξ)| ≤ C, since ρ has compact support implies ρf ∈ L1. Indeed, for any distribution

f ∈ D′(Rn) the bound

|ρ̂f(ξ)| ≤ C(1 + |ξ|)N0

holds for some N0 ∈ N. This is because, by definition of D′(Rn), for any compact set K there exist
constants C,N such that

| 〈u, ϕ〉 | ≤ C
∑
|α|≤N

sup | ∂αϕ|

whenever ϕ ∈ D(Rn) has support contained in K. So letting K be a compact set containing supp(ρ) and
choosing appropriate constants C0, N0 results in

|ρ̂f(ξ)| = |
〈
f, ρ e−ix.ξ

〉
|

≤ C0

∑
|α|≤N0

sup | ∂αρ e−ix.ξ |

≤ C(1 + |ξ|)N0

for some C > 0.

Then, since ψ′ ∈ C∞0 (Rn) and thus satisfies (5.1), we can bound the final expression in (5.21). For any
δ > 0, R ∈ N we have∣∣∣∣∫

Rn

ψ̂′(η)ρ̂f(ξ − η) dη

∣∣∣∣ ≤
∣∣∣∣∣
∫
δ|ξ|>|η|

ψ̂′(η)ρ̂f(ξ − η) dη

∣∣∣∣∣+

∣∣∣∣∣
∫
δ|ξ|<|η|

ψ̂′(η)ρ̂f(ξ − η)

∣∣∣∣∣
≤ sup

δ|ξ|>|η|
|ρ̂f(ξ − η)|

∫
Rn

|ψ̂′(η)| dη + C

∫
δ|ξ|<|η|

(1 + |η|)−R (1 + |ξ − η|)N0 dη

where in the second integral of the final expression we have used the estimates (5.1) to bound |ψ̂′(η)|
and the immediately preceeding remark to bound |ρ̂f(ξ − η)|.

For any M > 0, one can check that letting R = M + N0 + n results in an upper bound on the second
integral of the form C̃M (1 + |ξ|)−M for some constant C̃M .

To bound the first integral, observe that since N is a conic neighbourhood of ξ0, there exists a β > 0
such that ∣∣∣∣ ξ − η|ξ − η|

− ξ0
|ξ0|

∣∣∣∣ < β ⇒ ξ − η ∈ N.

To see this, observe that N must contain ξ0 and therefore ξ0
|ξ0| (as it is conic), and since it is a

neighbourhood there must exist some β > 0 such that
∣∣∣(ξ − η)− ξ0

|ξ0|

∣∣∣ < β ⇒ ξ − η ∈ N . From here the

result follows by using the conic property once more.
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Given such a β, if |η| is small enough compared to |ξ| we will have that∣∣∣∣ ξ − η|ξ − η|
− ξ

|ξ|

∣∣∣∣ < β

2
(5.24)

and so we can choose δ < 1
2 such that δ|ξ| > |η| implies that (5.24) holds.

Then if ∣∣∣∣ ξ|ξ| − ξ0
|ξ0|

∣∣∣∣ < β

2
,

by the triangle inequality we have δ|ξ| > |η| ⇒
∣∣∣ ξ−η|ξ−η| −

ξ0
|ξ0|

∣∣∣ < β and so

sup
δ|ξ|>|η|

∣∣∣ρ̂f(ξ − η)
∣∣∣ ≤ CM (1 + |ξ|)−M

as required.

Therefore,
{
ξ :

∣∣∣ ξ|ξ| − ξ0
|ξ0|

∣∣∣ < β
2

}
defines a conic neighbourhood on which, for all M , we can bound both

the terms in our expression for |ρ̂(ψf)(ξ)| by CM (1 + |ξ|)−M . Thus, |ρ̂(ψf)(ξ)| obeys the estimates (5.1)
on this neighbourhood, and so (x0, ξ0) /∈WF (ψf) and WF (ψf) ⊂WF (f) as desired.

From here, the extension to an arbitrary linear partial differential operator with smooth coefficients

Pf =
∑
|α|≤m

ψα(x) ∂αf

is relatively straightforward. We have the identity

∂̂ρf

∂xj
(ξ) = iξj ρ̂f(ξ)

and so if ρ̂f(ξ) ≤ CN (1 + |ξ|)−N then∣∣∣∣ ∂ρf∂xj
(ξ)

∣∣∣∣ =
∣∣∣ξj ρ̂f(ξ)

∣∣∣
≤ CN |ξj | (1 + |ξ|)−N

≤ CN (1 + |ξ|)−N+1

where the last line holds since |ξj | ≤ |ξ| ≤ 1 + |ξ| for all ξ. This means that for each α,
∣∣∣ρ̂∂αf(ξ)

∣∣∣ satisfies

estimates of the form (5.1) and so also, by previous work, does
∣∣∣ ̂ρ(ψα ∂αf)(ξ)

∣∣∣ . Since Pf is just the sum

of terms ψα ∂
αf and the Fourier transform is linear, the result follows immediately. �

Elliptic regularity results give us that when P is an elliptic operator, the inclusion in the above theorem is
actually an equality. The key result from propagation of singularities is that when P is strictly hyperbolic,
it may well be a strict inclusion. In the next section, as discussed in the introduction, we will show that in
this case singularities must actually propagate along specific curves (null bicharacteristics) corresponding
to the operator.

5.2 Propagation of Singularities

We will now use the gaussian beam construction to prove a propagation of singularities result for strictly
hyperbolic differential operators. The object of our attention will be the behaviour of singularities of u,
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the solution to the mixed problem:

Pu = f onR+ × Ω

Biu = gi onR+ × ∂Ω i = 1, · · · , l
∂iu

∂ti
= hi on {0} × Ω i = 0, · · · ,m− 1 (5.25)

where the Bi’s are some linear differential operators. From now on we will denote elements of R+ × Ω
by (t, x1, · · · , xn), and directly apply the results of the previous section with this change of notation.

In fact, we will actually use the gaussian beam construction for the adjoint operator P ∗. By this we mean
by this the unique differential operator such that∫

Rn+1

vPu =

∫
Rn+1

P ∗vu

for all u, v ∈ C∞0 (Rn+1). Observe that since they are real valued, the principle symbols of P and P ∗

coincide. In particular, this means that P ∗ is strictly hyperbolic, and so subject to the necessary as-
sumptions, our gaussian beam construction is admissable for P ∗. To formulate the corresponding mixed
initial-boundary value problem for P ∗ we also need some adjoint boundary conditions

B∗i v = 0 i = l + 1, · · ·m

to those given in (5.25). These are defined to be linear operators such that∫
R×Ω

(
vPu− P ∗vu

)
dx =

∫
R× ∂Ω

(
l∑
i=1

CivBiu+

m∑
i=l+1

B∗i vCiu

)
dx

holds for some linear operators Ci, i = 1, · · · ,m and all u, v ∈ C∞0 (Rn+1). The simplest example, and

we will use it later on, is when Biu = ∂i−1u
∂νi−1 for i = 1, · · · l and ∂

∂ν is the normal derivative to the
boundary ∂Ω. In this case, we can obtain by integration by parts that the adjoint operators are given

by B∗i v = ∂i−1v
∂νi−1 , i = 1, · · · ,m− l.

As is a standard approach in PDEs when working with the adjoint operator, we will consider solutions
starting at some fixed time T > 0 and extending into t < T . In our case, this means considering ray
paths starting at a point (x, T ) and moving backwards with respect to time.

So, given (x, ξ) ∈ Int(Ω) × Sn−1, and noting the new representation pm(t, x, τ, ξ) for the principle
symbol corresponding to the distinction of the time variable, we let {τi, i = 1, · · ·m} be the roots of
pm(T, x, τ, ξ) = 0 and follow the null bicharacteristics eminating from (T, x, τi, ξ) backwards into t < T .
Whenever we reach a point (t′, x′, τ ′, ξ′) with x′ on the boundary ∂Ω, as in the construction of reflected
gaussian beams, we then move along null bicharacteristics starting from (t′, x′, τ ′, ξ′i) where ξi = ξ′ + siν
are the real roots of pm(t′, x′, τ ′, ξ′ + sν) = 0 such that

0 > ν · ∂pm
∂ξ

∂pm
∂τ

∣∣
(t′,x′,τ ′,ξ′+siν)

(5.26)

and ν is the inner unit normal to ∂Ω. Observe the sign in the condition (5.26) is opposite to that in
the reflected gaussian beam construction. In that case, the condition ensured that the ray paths would
propagate forwards in time, and applying the same reasoning we get the opposite from (5.26), which is
precisely what we want. If we reach a point where there are no admissable si then we stop, otherwise
continue until reaching time t = 0, and end up with a collection of points

(0, yi, τi, ξi)
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at the end of the ray paths. These are the time 0 data for the shower produced by tracing backwards
from (T, x, ξ).

We make the following assumptions on this procedure:

• all bicharacteristics in the shower never graze. So for all (t′, x′, τ ′, ξ′) in the shower with x′ ∈ ∂Ω,
the polynomial pm(t′, x′, τ ′, ξ′ + sν) = 0 has m distinct roots in C.

• all bicharacteristics in the shower either stop (in the case that there are no admissable si’s) or reach
t = 0 in a finite number of reflections.

• yi ∈ Int(Ω) for i = 1, · · ·M .

• the adjoint boundary conditions satisfy the second assumption we required for the construction of
reflected gaussian beams, ie. the matrix (b∗)ij corresponding to the B∗i ’s has rank m− l.

Observe that these assumptions will allow us to construct reflected Gaussian beams for the adjoint
problem, which will be our key tool.

Given the above, the following theorem holds:

Theorem 5.10 (Propagation of Singularities) Suppose u ∈ Hm([0, T ]× Ω) satisfies (5.25) and

• (yi, ξi) /∈WF (hj) for i = 1, · · · ,M and j = 0, · · ·m− 1.

• For all (t′, x′, τ ′, ξ′) in the shower tracing back from (T, x, ξ) with x′ ∈ ∂Ω, the gj are smooth in a
neighbourhood of (t′, x′) for j = 1, · · · , l.

• supp(f) ⊂ Int([0, T ]× Ω) and WF (f) does not intersect the shower.

Then (x, ξ) /∈WF
(
∂ru
∂tr (T, ·)

)
for r = 0, 1, · · · ,m− 1 and hence from (5.25), for all r.

Recalling Theorem 5.7, this means that x can only be a singularity of u at time T if, tracing back along
the null bicharacteristics from (T, x, ξ) for some direction ξ, there is a singularity of f at an earlier time
or of the initial/boundary data. So, as alluded to earlier, singularities can only propagate along ray
paths. Note also that we have used a smoothness hypothesis for the gj ’s in the statement of the theorem,
rather than an assumption on their wave front sets. The theorem extends to the latter case, as has been
shown by Hörmander [1], but requires definition of the wave front set for distributions on a manifold (ie.
R× ∂Ω.) In this case, the wave front set can be defined as a subset of the cotangent bundle, but we will
not go into details here.

Proof. To begin, choose δ > 0 small enough so that whenever |ξ−ξ| < δ and |x′−x| < δ, the properties of
the shower obtained tracing back from (T, x′, ξ) are the same as those of the shower from (T, x, ξ). Then,
for any (x′, ξ) each within δ of (x, ξ) apply the results of the previous section for the adjoint problem. That
is, given N , construct Gaussian beams ω(t, x;x′, ξ, k) (corresponding to null bicharacteristics starting at
(T, x′, τj , ξ) for {τj , j = 1, · · ·m} the roots of pm(T, x′, τ, ξ) and evolving backwards in time) such that

(i) ‖P ∗ω‖0 ≤ Ck−N

(ii) ‖B∗i ω‖0 ≤ Ck−N i = l + 1, · · · ,m

(iii)
∥∥ ∂rω
∂tr (T, x)

∥∥
0
≤ Ck−N r = 0, · · · ,m− 2 and∥∥∥ ∂m−1ω

∂tm−1 (T, x, x′, ξ)− km−1φ(x) exp
(
ikx.ξ − k

2 |x− x
′|2
)∥∥∥

0
≤ Ck−N

for φ ∈ C∞0 (|x− x| < δ) with φ(x) = 1.
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So for time close to T , before any reflections have occured, ω is of the form

ω =

m∑
j=1

eikψj

(
aj0 + · · ·+

ajR
kR

)
(5.27)

for some r, where (
∂ψj
∂t

(T, x′),
∂ψj
∂x

(T, x′)

)
= (τj(x

′, ξ), ξ)

and the τj ’s are as described above.

The assumptions we’ve made ensure that the gaussian beam construction as in the previous section
is admissable for P ∗, and so we need only check that it is possible to obtain condition (iii). Recall
from the construction, that to ensure closeness of ω to the given initial data (in this case meaning
at time t = T ), we need only prescribe the Taylor series of the coefficients ajr(T, x) at fixed time T ,
about the point x′ appropriately. Differentiating i times (i = 0, · · · ,m − 1) the expression (5.27) with
respect to time, evaluating at T and either insisting that this vanishes to high order at x′ or agrees with
km−1φ(x) exp

(
ikx.ξ − k

2 |x− x
′|2
)

for i = m− 1, we see that the Taylor series is determined by equations
of the form

m∑
j=1

(τj(x
′, ξ))

i
ajr(T, x

′) = gri (5.28)

for each i, r. Here the gri’s are determined by φ, the ψj , and ajr′ for r′ < r.

So we see that we must solve inductively in r systems of the form

Aar = gr (5.29)

where Aij = (τj(x, ξ))
i
, (ar)j = ajr(T, x) and (gr)i = gri as above.

However, by the strict hyperbolicity assumption, the τj ’s are distinct and so the matrix A is a Vander-
monde matrix. This means that the above system (5.29) is uniquely solvable, and so our construction
of ω is justified. Referring back to the previous section we also know that ω is smoothly dependent on
(x′, ξ), and so provided δ is small enough we may assume that the constant C in (i)-(iii) is uniform in
|x− x′| < δ, |ξ − ξ| < δ.

Now, since x and the yi’s lie in the interior of Ω by assumption, and ω is concentrated around the (x, t)
projection of the shower tracing back from (T, x, ξ) to the (yi, ξi)’s, we can take ω to vanish near the
corners {T} × ∂Ω and {0} × ∂Ω. Applying integration by parts, since u ∈ Hm([0, T ]× Ω), we have∫

[0,T ]×Ω

ωf =

∫
[0,T ]×Ω

ωPu

=

∫
[0,T ]×Ω

P ∗ωu+

∫
[0,T ]× ∂Ω

M(u, ω, ν)

+

∫
{0}×Ω

M̃(u, ω, et) +

∫
{T}×Ω

˜̃M(u, ω,−et) (5.30)

where ν is the normal to ∂Ω and M,M̃, ˜̃M are expressions determined by the order in which we do the
integration by parts. Observe the absence of boundary terms from the corners, due to the assumption
on ω made immediately before.

By definition of the adjoint operators B∗i we see that∫
[0,T ]× ∂Ω

M(u, ω, ν) =

∫
[0,T ]× ∂Ω

(
l∑
i=1

CiωBiu+

m∑
i=l+1

B∗i ωCiu

)
(5.31)
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where on ∂Ω we have Biu = gi for each i by assumption. Furthermore, recall from the previous discussion

that the adjoints of operators Biu = ∂i−1u
∂νi−1 , i = 1, · · · , l are given by B∗i u = ∂i−1u

∂νi−1 , i = l + 1, · · · ,m.

Applying this with ∂
∂ν = ∂

∂t in the case l = m gives∫
{0}×Ω

M̃(u, ω, et) =

∫
{0}×Ω

m∑
i=1

Eiωhi

(hi = ∂i−1u
∂ti−1 on this domain) and with l = 0 gives∫

{T}×Ω

M̃(u, ω,−et) =

∫
{T}×Ω

m∑
i=1

∂i−1ω

∂ti−1
Diu

for some differential operators E and D.

Although we will not need much information about these operators we can calculate, simply proceeding
with the integration by parts, that since the coefficient of ∂m

∂tm in P is assumed to be one, we have

Dmu = (−1)m−1u.

Putting the above together and rewriting (5.31) with the equivalent expressions for each term, we obtain∫
[0,T ]×Ω

ωf =

∫
[0,T ]×Ω

P ∗ωu (5.32)

+

∫
[0,T ]× ∂Ω

(
l∑
i=1

Ciωgi +

m∑
i=l+1

B∗i ωCiu

)
(5.33)

+

∫
{0}×Ω

m∑
i=1

Eiωhi (5.34)

+

∫
{T}×Ω

m∑
i=1

∂i−1ω

∂ti−1
Diu (5.35)

By condition (i) in the construction of ω, we have that (5.32) is O(k−N ), and by condition (iii) along
with the observation that Dmu = (−1)m−1u, (5.35) is equal to

(−1)m−1

∫
{T}×Ω

km−1φ(x) eikx.ξ− k
2 |x−x

′|2 u(x, T ) dx+O(k−N ).

Furthermore, since our constants in (i)-(iii) were uniform in |x′ − x| < δ and |ξ − ξ| < δ, these O(k−N )
are uniform for x′ in a neighbourhood of supp(φ) (φ ∈ C∞0 (|x − x̄| < δ)) and |ξ − ξ′| < δ. To estimate
(5.33) and (5.34) similarly, we need the following Lemma:

Lemma 5.11 Assume ∂ψ
∂x 6= 0 and

(
∂ψ
∂x

)
(x0) = ξ0 with (x0,−ξ0) /∈ WF (u) for u ∈ L2

loc. Assume

φ ∈ C∞0 (Rn) and Imψ ≥ c2|x− x0|2 on the support of φ. Then there are constants CN such that∣∣∣∣∫ eikψ φu dx

∣∣∣∣ ≤ CNk−N (5.36)

for k > 0 and N ∈ Z.

Moreover, if ψ depends smoothly on parameters y, η, so

ψ = ψ(x; y, η) and
∂ψ

∂x
(x0; y0, η0) = ξ0,

then the constants in (5.36) are uniform for (y, η) in |y − y0| < δ0 and |η − η0| < δ0.
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We will use this for now without a proof, which will be postponed to the end of the section.

The Lemma can be applied immediately to show that (5.34) is O(k−N ) (uniformly for x′ in a neighbour-
hood of supp(φ) and |ξ − ξ| < δ). This is because, for each i in the sum, Eiωhi is an expression of the
form ∑

j

φj e−ikψ̄j hi (5.37)

where φj ∈ C∞0 (Rn) and each ψj comes from the expression for the reflected gaussian beams (the
sum is over all ray paths in the shower tracing back from (T, x′, ξ)), evaluated at time t = 0. Observe
that we have e−ikψ̄j here, rather than eikψj as in the expression for ω, which is due to the fact that
we have complex conjugated ω in (5.34). Since these ray paths end at the points (yj , ξj) for each j,
by construction of the gaussian beams we have Im(−ψ̄j) = Im(ψj) ≥ c2|x − yj |2 on supp(φj) and(
∂(−ψ̄j)
∂x

)
(yj) = −ξj . Moreover, by the non-grazing hypothesis

∂(−ψ̄j)
∂x 6= 0 and finally by our original

assumptions, (yj ,−(−ξj)) = (yj , ξj) /∈WF (hi) for each i, j. Thus, applying the Lemma directly gives us
the required result.

A little more care is required for the term (5.33), although the principle is the same. The term∫
[0,T ]× ∂Ω

∑m
i=l+1B

∗
i ωCiu is O(k−N ) by condition (ii) for ω, and so we need only deal with∫

[0,T ]× ∂Ω

l∑
i=1

Ciωgi.

The slight difficulty here arises from the fact that we are working on the boundary ∂Ω× [0, T ]. To deal
with this we introduce local coordinates y1, · · · , yn−1 on ∂Ω and write gi = gi(t, x(y)). As above, we can
then write the expression inside the integral as∑

j

φj eikψj gi

for phase functions ψj = ψj(t, x(y)), where everything in the Lemma holds trivially by construction of the

gaussian beams except that
(
∂ψj

∂t ,
∂ψj

∂y

)
6= 0. The wave front set condition comes from the assumption that

the gj ’s are smooth at all points (t′, x′) such that (t′, x′, τ ′, ξ′) are on bicharacterstics in the shower with

x′ ∈ ∂Ω. Clearly this implies that (t′, x′(y),− ∂ψj

∂t ,−
∂ψj

∂y ) /∈ WF (gi)∀i. To verify that
(
∂ψj

∂t ,
∂ψj

∂y

)
6= 0

note that
(
∂x
∂y

)
has rank n− 1 and ν · ∂x∂y = 0 since the yk’s are coordinates on ∂Ω and ν ⊥ Ω. Therefore(

∂ψj
∂t

,
∂ψj
∂y

)
= 0⇔

(
∂ψj
∂t

∂ψj
∂y

)
= (0, αν)

for some α, but this is not allowed as a result of the non grazing hypothesis. Hence, we may apply the
lemma to deduce that the (5.36) is O(k−N ) uniformly for x′ in a neighbourhood of supp(φ) and |ξ−ξ| < δ.

Putting this all together we obtain that∫
[0,T ]×Ω

ω̄f = (−1)m−1

∫
Ω

km−1φ(x) exp

(
−ikx.ξ − k

2
|x− x′|2

)
× u(x, T ) dx+O(k−N ) (5.38)

where O(k−N ) is uniform on the set described above.

Moreover, by modifying the Lemma slightly (as will be discussed in the proof) since it was assumed that
the wave front set of f does not intersect the shower, we get that for given t0 ∈ (0, T ) there exists an
ε > 0 such that for ρ ∈ C∞0 (|t− t0| < ε)∣∣∣∣∣

∫
[0,T ]×Ω

ρω̄f

∣∣∣∣∣ ≤ CNk−N . (5.39)
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Using the two expressions (5.38) and (5.39) above, we see that∫
Ω

φ(x) exp

(
−ikx · ξ − k

2
|x− x′|2

)
u(x, T ) dx = (−1)m−1

∫
[0,T ]×Ω

ω̄f +O(k−N )

≤ CNk
−N (5.40)

where the final inequality holds since we claim that we can find constants C̃N such that∫
[0,T ]×Ω

ω̄f ≤ C̃Nk−N .

One can verify the claim as follows: take εt as in (5.39) for each t ∈ (0, T ) and form an open cover
{(t−εt, t+εt) : t ∈ [δ′, T −δ′]} of [δ′, T −δ′] where δ′ > 0 is chosen so that supp(f) ⊂ [δ′, T −δ′]×Ω. This
choice of δ′ is permissable due to the assumption that the support of f lies in the interior of [0, T ] × Ω.
Let {(ti0 − εti0 , t

i
0 + εti0) : i ∈ I} be a finite subcover and then take a partition of unity {ρi}i∈I such that

each ρi belongs to C∞0 (|t− ti0| < εti0) for some i. Suppose in (5.39) we have constants CiN corresponding

to ti0 for each i ∈ I. Then ∣∣∣∣∣
∫

[0,T ]×Ω

ω̄f

∣∣∣∣∣ =

∣∣∣∣∣
∫

[0,T ]×Ω

∑
I

ρiω̄f

∣∣∣∣∣
≤

∑
I

∣∣∣∣∣
∫

[0,T ]×Ω

ρiω̄f

∣∣∣∣∣
≤

∑
I

CiNk
−N

= C̃Nk
−N

for some constants C̃N , where the first equality holds since {ρi}i∈I is a partition of unity of [δ′, T − δ′]
and f has support contained in the interior of [δ′, T − δ′]× Ω by assumption.

As usual, we can choose the constants CN in (5.40) to be uniform in a neighbourhood of supp(φ), which
we’ll denote by O, and for |ξ − ξ| < δ. Thus, multiplying by kn/2 and integrating over all x′ ∈ O we see
that ∣∣∣∣∫

Ω

φ(x) e−ikx.ξ

(
kn/2

∫
O

e−k/2|x−x
′|2 dx′

)
u(x, T ) dx

∣∣∣∣ ≤ CNk−N+ n
2 .

Note that from now on the constants CN will vary from line to line.

If we let C =
∫
Rn e−

|y|2
2 dy and make the change of variables y =

√
k(x′ − x), we obtain that∣∣∣∣φ(x)

(
C − kn/2

∫
O

e−k/2|x−x
′|2 dx′

)∣∣∣∣ =

∣∣∣∣∣φ(x)

(
kn/2

∫
Rn\O

e−k/2|x−x
′|2 dx′

)∣∣∣∣∣
≤ CNk

−N

uniformly for x ∈ Rn. This holds since the expression is only non-zero for x ∈ supp(φ) and the region
of integration (outside of O a neighbourhood of supp(φ)) is a fixed distance away from x. But from here
one can easily deduce, using the triangle inequality, that

C

∣∣∣∣∫
Ω

φ(x) e−ikx.ξ u(x, T ) dx

∣∣∣∣ ≤ ∣∣∣∣∫
Ω

φ(x) exp

(
−ikx · ξ − k

2
|x− x′|2

)
u(x, T ) dx

∣∣∣∣
+

∣∣∣∣∫
Ω

φ(x)

(
C − kn/2

∫
O

e−k/2|x−x
′|2 dx′

)
e−ikx.ξ u(x, T ) dx

∣∣∣∣
≤ CNk

−N+n/2
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where the bound on the first term comes from (5.40) and the second from the above and the fact that
e−ikx.ξ belongs to L1 (plus multiplying by kn/2 which is allowed since it increases the bound.)

Thus, altering and relabelling the constants CN ↔ CN−n/2, we reach the conclusion that∣∣∣∣∫
Ω

φ(x) e−ikx.ξ u(x, T ) dx

∣∣∣∣ ≤ CNk−N (5.41)

for each N , uniformly for |ξ − ξ| < δ. Hence, letting k = |ξ| and applying the above to ξ
|ξ| , we get that

∣∣∣φ̂u(T, ·)(ξ)
∣∣∣ =

∣∣∣∣∫
Ω

φ(x) e−ix.ξ u(x, T ) dx

∣∣∣∣ ≤ CN |ξ|−N
for all ξ ∈ N =

{
ξ :

∣∣∣ ξ|ξ| − ξ∣∣∣}, a conic neighbourhood of ξ. Recalling the definition of the wavefront set,

along with the subsequent remarks, this implies that (x, ξ) /∈WF (u(x, T )).

So now, all that is left is to show that (x, ξ) /∈ WF
(
∂ru
∂tr (T, ·)

)
for r = 0, · · · ,m− 1. We’ll first consider

the case r = 1, and return to the expression∫
[0,T ]×Ω

ωf =

∫
[0,T ]×Ω

P ∗ωu+

∫
[0,T ]× ∂Ω

(
l∑
i=1

Ciωgi +

m∑
i=l+1

B∗i ωCiu

)

+

∫
{0}×Ω

m∑
i=1

Eiωhi +

∫
{T}×Ω

m∑
i=1

∂i−1ω

∂ti−1
Diu.

Considering the integration by parts procedure by which the operators Di are obtained, we have that

Dm−1u = (−1)m−2 ∂u

∂t
+ F (u)

where F is some operator which depends only on the x-variables. By the above proof and theorem (5.9),

(x, ξ) /∈WF (u(T, ·))⇒ (x, ξ) /∈WF (F (u(T, ·)))

and so we can choose φ with φ(x) = 1 such that∣∣φ e−ikx.ξ F (u)(x, T ) dx
∣∣ ≤ CNk−N (5.42)

uniformly for |ξ − ξ| < δ. Constructing a new Gaussian beam ω such that∥∥∥∥ ∂rω∂tr (T, x)

∥∥∥∥
0

≤ CNk
−N 0 ≤ r ≤ m− 1 , r 6= m− 2∥∥∥∥ ∂m−2ω

∂tm−2
(T, x)− km−2φ(x) exp

(
ikx · ξ − k/2|x− x′|2

)∥∥∥∥
0

≤ CNk
−N

we can use exactly the previous argument, with m− 1 in place of m, to show that∣∣∣∣∫
Ω

φ(x) e−ikx.ξDm−1u(x, T )

∣∣∣∣ ≤ CNk−N .
Substituting in the expression for Dm−1u and using the triangle inequality with (5.42) shows that (x, ξ) /∈
WF ( ∂u∂t (T, ·)) as required. For r = 2, · · ·m− 1 we may apply the same reasoning inductively, considering
the operator Dm−r in each case, to reach the conclusion.

�
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In order to complete the proof of the theorem, we must now prove Lemma (5.11).

Recall that we are trying to prove the existence of constants CN such that∣∣∣∣∫ eikψ φu dx

∣∣∣∣ ≤ CNk−N (5.43)

assuming that ∂ψ
∂x 6= 0,

(
∂ψ
∂x

)
(x0) = ξ0 and (x0,−ξ0) /∈ WF (u) for u ∈ L2

loc, along with φ ∈ C∞0 (Rn)

and Imψ ≥ c2|x− x0|2 on supp(φ).

Proof. Firstly, by the assumption that (x0,−ξ0) /∈WF (u) there must exist ρ ∈ C∞0 (Rn) with ρ ≡ 1 on a
neighbourhood of x0 such that

|ρ̂u(ξ)| ≤ CN (1 + |ξ|)−N (5.44)

for all ξ satisfying ∣∣∣∣ ξ|ξ| +
ξ0
|ξ0|

∣∣∣∣ < δ.

Here we recall from the previous proof that any conic neighbourhood of −ξ0 contains such a set of ξ’s.

Since ∂ψ
∂x (x0) = ξ0, by continuity we must have that ∂ψ

∂x (x) is close to ξ0 for |x− x0| small. Furthermore,

|kξ0 + ξ|2 > c̃(k2 + |ξ|2) for
∣∣∣ ξ|ξ| − ξ0

|ξ0|

∣∣∣ > δ
2 and so if ξ is in this set, and |x− x0| < δ′ for δ′ small enough

then ∣∣∣∣k ∂ψ∂x (x) + ξ

∣∣∣∣2 > c(k2 + |ξ|2), c > 0. (5.45)

Define the operator

(Bw)(x) = (2π)−n/2
∫

eix.ξ b(ξ)ŵ(ξ) dξ (5.46)

where b(ξ) is chosen to vanish when
∣∣∣ ξ|ξ| + ξ0

|ξ0|

∣∣∣ ≤ δ
2 and when |ξ| < 1/2, and be a homogeneous function

of degree 0 for |ξ| > 1, equal to one when
∣∣∣ ξ|ξ| + ξ0

|ξ0|

∣∣∣ ≥ δ. This construction is to ensure that (1− b(ξ))
vanishes for all ξ such that the estimates (5.44) may fail to hold, and so that (5.45) holds on supp(b) for
all appropriate x.

Choosing ρ0 ∈ C∞0 (|x− x0| < δ′) with ρ0 ≡ 1 on a neighbourhood of x0, write∫
eikψ φu =

∫
eikψ(1− ρ0ρ)φu dx (5.47)

+

∫
eikψ φρ0(ρu−B(ρu)) (5.48)

+

∫
eikψ φρ0B(ρu). (5.49)

The goal will be to bound each of the above terms by {CNk−N : N ∈ N}, and then the result will follow.

The first is straightforward since ρ0ρ ≡ 1 on a neighbourhood of x0 implies that (1 − ρ0ρ) ≡ 0 on that
neighbourhood and therefore Imψ > r > 0 on supp((1−ρ0ρ)φu). Thus the term eikψ, which has modulus
e−kImψ < e−kr, allows us to deduce bounds of the required form.

For the second, note that since (1− b(ξ)) = 0 for all ξ such that the bounds (5.44) may fail to hold

(2π)−n/2
∫

eix.ξ(1− b(ξ))ρ̂u(ξ) dξ
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converges and is equal to f = ρu − B(ρu). Using the bounds and differentiating under the integral, we
therefore have that f ∈ C∞(Rn).

Defining an operator L by

Lw =

∣∣∣∣ ∂ψ∂x
∣∣∣∣−2

∂ψ

∂x
· ∂w
∂x

,

it is trivial to check that L eikψ = ik eikψ, and so for any N (5.48) is equal to

1

(ik)N

∫
(LN eikψ)φρ0f dx =

1

(ik)N

∫
eikψ(Lt)N (φρ0f) dx. (5.50)

This clearly also satisfies the necessary bounds, so we have dealt with (5.48).

Finally we must estimate (5.49), for which we employ a similar method. We would like to write it, by
definition of B, as

(2π)−n/2
∫

dx

∫
ei(ξ.x+kψ) ρ0(x)φ(x)b(ξ)(̂ρu)(ξ) dξ

but problematically, the integral in ξ may fail to converge. However, if we instead consider the restriction

of (̂ρu)(ξ) to |ξ| < R, denoted by (̂ρu)R(ξ), and exchange them in the above expression it then becomes
valid. Letting L be defined by

Lw =

∣∣∣∣k ∂ψ∂x + ξ

∣∣∣∣−2(
k
∂̄ψ

∂x
+ ξ

)
· ∂w
∂x

we have LM (ei(x.ξ+kψ)) = iM ei(x.ξ+kψ) for all M and thus

(2π)−n/2
∫

dx

∫
ei(ξ.x+kψ) ρ0(x)φ(x)b(ξ)(̂ρu)R(ξ) dξ = iM

∫
dx

∫
ei(ξ.x+kψ)(Lt)M (ρ0φ)b(ξ)(̂ρu)R(ξ) dξ

for all R.

Since
∣∣∣k ∂ψ∂x (x) + ξ

∣∣∣2 > c(k2 + |ξ|2) for x ∈ supp(ρ) and ξ ∈ supp(b), we have∣∣(Lt)M (ρ0φ)
∣∣ ≤ C(k2 + |ξ|2)−M/2

which means that we can bound ei(ξ.x+kψ)(Lt)M (ρ0φ)b(ξ)(̂ρu)R(ξ) uniformly in R by an integrable func-
tion. Thus we may apply dominated convergence to deduce that (5.49) is equal to

lim
R→∞

iM
∫
dx

∫
ei(ξ.x+kψ)(Lt)M (ρ0φ)b(ξ)(̂ρu)R(ξ) dξ = iM

∫
dx

∫
ei(ξ.x+kψ)(Lt)M (ρ0φ)b(ξ)(̂ρu)(ξ) dξ,

which obeys the estimates (5.43) as required.

So we are left with the task of showing that the constants in (5.43) are uniform for (y, η) in
|y − y0| < δ0, |η − η0| < δ0 if ψ = ψ(x; y, η) such that ∂ψ

∂x (x0; y0, η0) = ξ0 depends smoothly on
parameters. We must also discuss how the proof can be modified to attain (5.39).

For the former, observe that all we need show is that we can find some δ0 > 0 such that whenever
|y − y0| < δ0 and |η − η0| < δ0 we have:

• given δ > 0 there exists δ′ > 0 such that |x− x0| < δ′ and
∣∣∣ ξ|ξ| + ξ0

|ξ0|

∣∣∣ > δ
2 imply that∣∣∣∣k ∂ψ∂x (x; y, η) + ξ

∣∣∣∣ > c
(
k2 + |ξ|2

)1/2
. (5.51)
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• given δ̃ > 0 there exists r > 0 such that Im(ψ(x; y, η)) > r > 0 on the support of φ whenever
|x− x0| > δ̃.

This will be sufficient, as these were the only conditions used in the proof.

To see that the first condition is possible, simply note that by continuity we can choose δ′ small enough
such that |y − y0| < δ′, |η − η0| < δ′ and |x − x0| < δ′ imply that ∂ψ

∂x (x; y, η) is sufficiently close to ξ0
for (5.51) to hold for relevant ξ. The deduction of (5.51) given that ∂ψ

∂x (x; y, η) ∼ ξ0 follows exactly as
before.

For the second, assume that Im(ψ(x; y, η)) ≥ c|x − x(y, η)|2 on supp(φ) for some smooth x(y, η)
with x(y0, η0) = x0. This means that we can find δ′′ sufficiently small that |y − y0|, |η − η0| < δ′′ ⇒
|x(y, η)− x0| < δ̃

2 . Then |x− x0| > δ̃ ⇒ |x− x(y, η)| > δ̃
2 and so Im(ψ(x; y, η)) > c( δ̃2 )2 = r on supp(φ).

Hence, combining the above and taking δ0 = min(δ′, δ′′) gives the required result.

Finally, to achieve (5.39) from the proof of the Theorem, we use a similar idea. Our goal is to show that
given t0 ∈ (0, T ) there exists some ε > 0 such that ρ ∈ C∞0 (|t− t0| < ε)⇒∣∣∣∣∣

∫
[0,T ]×Ω

ρω̄f

∣∣∣∣∣ ≤ CNk−N .
By the assumptions made on ω and f , we know that at the fixed time t0, (ω̄f)(t0, ·) is of the correct
form and satisfies the conditions needed to use the Lemma. That is, (ω̄f)(t0, ·) can be written as a sum
(over all null bicharacteristics in the shower), with each term corresponding to some ψ, φ and (x0, ξ0) in
the shower at time t0, to which we can apply the Lemma. For simplicity we will consider only one term,
the full result following trivially.

Take ψ, φ, (x0, ξ0) as fixed, corresponding to some null bicharacteristic at time t0. Again by smooth
dependence, this time of both ψ and f on t (before we only considered ψ), we can find ε > 0 small
enough that whenever |t− t0| < ε,

• given δ > 0 there exists δ′ > 0 such that |x− x0| < δ′ and
∣∣∣ ξ|ξ| + ξ0

|ξ0|

∣∣∣ > δ
2 imply that∣∣∣∣k ∂ψ∂x (x; t) + ξ

∣∣∣∣ > c
(
k2 + |ξ|2

)1/2
. (5.52)

• given δ̃ > 0 there exists r > 0 such that Im(ψ(x; t)) > r > 0 on the support of φ whenever
|x− x0| > δ̃.

This means, by the same reasoning as our original proof, that for any t ∈ (t0 − ε, t0 + ε)∣∣∣∣∫
Ω

(ω̄f)(t, x) dx

∣∣∣∣ ≤ CNk−N
for uniform constants CN . Thus, for any ρ ∈ C∞0 (|t− t0| < ε)∣∣∣∣∣

∫
[0,T ]×Ω

ρω̄f

∣∣∣∣∣ ≤ sup
[0,T ]

|ρ|

∣∣∣∣∣
∫

supp(ρ)×Ω

ω̄f(t, x) dxdt

∣∣∣∣∣
≤ sup

[0,T ]

|ρ|

∣∣∣∣∣
∫

supp(ρ)

(∫
Ω

ω̄f(t, x) dx

)
dt

∣∣∣∣∣
≤ sup

[0,T ]

|ρ| × 2ε× CNk−N

≤ CNk
−N

for some, alternative, constants {CN : N ∈ N}. �
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