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1 Introduction

This report deals with linear hyperbolic partial differential equations. The prototype of such an equation
is the classical wave equation

0? 0? 0?

n

for a function v on R™*!. Our notion of hyperbolicity is made precise in the following

Definition 1.1 Let P be a linear partial differential operator of order m acting on real-valued functions
(t,z) — u(t,x) with (t,x) € R xR™. Setting fo, := exp(ia(tt +x-£)), the principal symbol of P is defined
by the polynomial

Pm(t, 2, 7,8) = lgréo aim[fapfa](ta ), (1.2)
of degree m. We call P strictly hyperbolic if s — pn(t,x,s,&) has m distinct real roots for all £ # 0.

Remark 1.2 The coefficient of 9™ /Ot™ in all strictly hyperbolic operators of degree m is non-zero. We
therefore assume this coefficient to be one.

It is a feature of the wave equation to allow for travelling wave packets, i.e. for solutions which are
localised in space and propagate in time on certain curves and this property is shared by the class of
all linear hyperbolic PDEs Pu = 0 on R™"!. One can construct such localised solutions by means of
Gaussian beams, which are approximate solutions of the form

i t> tu
(t,z) s ek () (ao(t,x) + ‘“(k YDy C‘N/in m’) : (1.3)

where ¥ and a;, for 1 < ¢ < N € N, are real-valued and k > 1. One shows that these Gaussian beams
must be concentrated around ray paths.

Definition 1.3 Let P be a strictly hyperbolic operator and p,, its principal symbol. Let (A,é‘:,é) e R x
R™ x R™\{0} and choose 7 € R such that

pm(f,&,7,6) = 0. (1.4)

Then 7y : s = (t(s),2(s),7(s),£(s)) is a null bicharacteristic curve through (£,2,€) if the Hamiltonian
system
= OPm t= OPm

o¢ "’ or’

_Om . Opm

= T T (1.5)

is satisfied with (£(0),z(0),7(0),£(0)) = (£,&,7,€). We call the projection of a bicharacteristic on the
(t,z)-space a ray path.
Remark 1.4 Recall that for Q@ C R2"tD gnd

F: Q—R,(ta,1,¢— FtzrTE) (1.6)

the Hamiltonian vector field is defined by

Hoow (9F0 _OF 0N
F=\orot otor

NE

OF & OF 0
& 0x;  Ox; 08 )

=1

Thus each null bicharacteristic curve 7y satisfies ¥ = Hp, .



Another characteristic of hyperbolic equations is that they allow for solutions with singularities, which is
in sharp contrast to elliptic partial differential equations where a solution u of Du = f for elliptic D and
smooth f is always smooth. This gives rise to the interesting question how singularities in solutions to a
hyperbolic PDE propagate. The notion of propagation of singularities will be made more precise in due
course.

This report is structured as follows. First we will sketch the method of approximating solutions to the
linear wave equation using geometrical optics, which is closely related to the Gaussian beam ansatz, and
we will explain the limitations of the geometrical method. The subsequent part will be devoted to the
construction of Gaussian beams on R”*! for arbitrary strictly hyperbolic operators P and for the special
case of [J. Thereafter we shall explore how to adapt this construction for the background R x € with a
bounded domain 2 C R™. The last sections will deal with the aforementioned propagation of singularities
and will apply the Gaussian beam approximation to characterise the propagation of singularities.

The main reference for the theory presented in this report is Ralston’s article [3]. The section about
geometrical optics follows the lines of Taylor [5].



2 Geometrical optics

The geometric optics approximation is an important tool in studying the wave equation. The threefold
purpose of this section is to introduce this method, to show its limitations and to prepare the way for
the Gaussian beam approximation. Therefore we do not intend to give an account of the geometrical
optics ansatz in its most general form, but rather presenting an approach parallel to our construction of
Gaussian beams.

Consider again the wave equation Ou = 0 on R™*!. We aim to find approximate solutions of the form

(t .CE) . elklll(t x) Z a; t)x) (21)

with a,¢ € C>®((—=T,T) x R™) for some T' > 0. More precisely, we want to achieve that, for vy :=

elkv () Z;‘V:o aZI(J:)f) ;

Ouy = O(k™") (2.2)
in CN+1=¥ for 0 < v < N. We will see that we can arrange this if, for all N, we require
on (0, ) = a(z) FP@ (2.3)

where a € C§°(R") and ¢ € C*°(R") with Vg # 0 on a neighbourhood of supp a.

2.1 Construction of the approximation

One easily calculates that

oy =lF¥ (DCLO +...+ 5];1)1]\[\[) (2.4)
o ) i

—2ike Ky (8{(/) (&ao + ...+ (;}:’N ) Z 811/) <8 ag+ ...+ (1];;]1\\]/')> (25)

+ ikOyon + E2(|0p0]* — |V |H)on (2.6)

The coefficient of k2 is

e ag(|0y? - VL), (2.7)

the coefficient of k' can be written as
ie* a0y — 1™ (|0 — Vet (2:8)
—ietk¥ (2@1/}%‘10 — 2V, - Vma()) (2.9)

and for k'=7 (j > 1), we have
i7" a;00 — i e aj (107 — IV ?) (2.10)
+ 2i1 77 kY (atwatal — an a,»waiaj) + il &% Oay. (2.11)
i=1

We will set these coefficients successively equal to zero. The coefficient of k2 vanishes if ¢ satisfies the
eikonal equation

2
v S| = 2.12
|+ VL =0 (2.12)




with initial datum (0, z) = ¢(z). Below we will prove that there is a neighbourhood U of K := suppa
and a T > 0 such that the eikonal equation exhibits a unique solution for each choice of /-, i.e. a
p e C®((-T,T) x U) with

0
P0.2) = pla), 5 (0,2) = ~IVet(o)] (213)
Remark 2.1 Equation (2.12) can be written as
oY B

with the principal symbol py of the wave equation. In the geometrical optics ansatz we require the principal
symbol to vanish, but this may lead to a solution which is only local time, i.e. T < 0o, meaning that we
cannot construct a global approzimate solution to the wave equation. In the Gaussian beam approximation,
we require equation (2.14) to hold only up to a certain order, which will be crucial to guarantee global
approrimations.

Proceeding to next order, we see that the coefficient of A\' vanishes if the transport equation

8’¢ 8&0 -

is satisfied. Noting that 0,p # 0 on U for |¢| sufficiently small, one shows as in [5] that this PDE has
unique solutions once initial conditions are specified. Equation (2.3) implies that

ao(0,z) = a(x). (2.16)

Thus we get ag € C°((—=T7,T) x U), compactly supported in U on every time slice, for T' small enough.
The terms in equation (2.10) vanish provided that

oY Oa;
Eaitj =2V 1 - Vmaj — aij + Dajfl. (217)

In the light of (2.3), we require
a;(0,2) =0. (2.18)

Hence the transport equation (2.17) has a unique solution a; € C*°((—T,T) x U), compactly supported
in U on each time slice, for 7" small enough.
The above construction yields that

Oun = (ik)"VDay e*, (2.19)
and we conclude that
Ouy = O(k™") (2.20)

in CNH1=v((—=T,T) x U) for 0 <v < N.
Therefore the geometrical optics ansatz gives a suitable approximation to solutions of the wave equation.
Furthermore, this approximation induces possible initial conditions for an initial value problem in R™*1.

2.2 The eikonal equation

A crucial step in the construction above was the appeal to solutions of the eikonal equation. Considering
eikonal equations of the form

DPm (t,x, %’ in/J) =0 (2.21)



to high order is a key idea in the Gaussian beam approximation. To introduce the abstract methods which
are related to study this problem, we will give an account of how existence and uniqueness of solutions
to the eikonal equation can be shown. We will conclude this section by explaining why solutions to this
equation need not be global, which results in a break down of the geometrical optics approximation.
The eikonal equation is of the more general form

F(z,du) =0 (2.22)

for F smooth on RtV Let S = {t = 0} and v smooth on S. Require u|s = v. Let 29 € S and
& = Vv. Let 79 € R be such that

F(zo, (10,0)) = 0. (2.23)

Note that if F' is the principal symbol of a strictly hyperbolic operator, then such a choice is always
possible provided that &y # 0. We assume that S satisfies the noncharacteristic hypothesis

O (w0, (r0,€0)) 0. (2:24)

If F is the principal of OJ, then this is satisfied as long as &, # 0.
We look for a solution by appealing to the theory of Hamiltonian systems. Recall that a symplectic form
o on R2"+1) = (g, &) € R*! x R*F1} is given by

g = dej N dl‘j. (225)

j=1
Now let A be the graph of a function ¢ = Z(z) in R2"+1), Then the following holds.
Proposition 2.2 The surface A is locally the graph of du for a smooth function u if and only if
0, _ 0=
al‘k - 8xj

(2.26)

for all 5, k.

Proof. Condition (2.26) is equivalent to saying that >, =;(z)dz; is closed. By the Poincaré lemma,
there is a smooth w such that du = Y7 | E;(z)dx; locally, but this is equivalent to A being locally the
graph of du. O

Proposition 2.3 The surface A is locally the graph of du if and only if o(X,Y) = 0 for all vectors X, Y
tangent to A.

Proof. 1t suffices to check the condition on o on a generating system of tangent vectors. Define

d " 95, Kl

SRR TR ot (2.27)
for j =1,...,n. Then these generate the tangent space and one easily checks that
o(Xp, X;) = giz - ZZ?. (2.28)
The result follows from the previous proposition. O
We define a set ¥ C R2+1) over S by
L=A{(z,) : t=0,§ = djv, F(z,(1,£)) = 0} (2.29)

using « = (¢,2’). The noncharacteristic condition implies by the implicit function theorem that there is
a local smooth function 7(z’) such that F(z, (7,£)) = 0. Thus ¥ is an n-dimensional surface.

Define A to be the union of the integral curves of the Hamiltonian vector field Hr through X. By the
noncharacterisitc condition, Hp has a nonvanishing 9/9¢ component so that A has dimension n + 1 and
is graph of a function £ = Z(z) in a neighbourhood of x.



Theorem 2.4 The surface A is locally the graph of du for a solution u to
F(z,du) =0, wu|s=0. (2.30)

Proof. Let X,Y be vector fields tangent to A at (z,£) € A. By the previous propositions, it suffices to
show o(X,Y) = 0. First, suppose that € S, i.e. (z,£) € X. Decompose X = X1+ X5, Y = Y; + Y5 such
that X1, Y7 are tangent to ¥ and X5, Y5 are multiples of Hp. The surface ¥ is the graph of a gradient
if considered as its restriction to R?" (forgetting ¢ and 7). By Proposition 2.3 we have o(X1,Y;) = 0.
Recalling that o(Hp,:) = —dF and that F' = 0 along integral curves of Hp, it follows that

o(X,Y) =0(X1,Y1) +0(Xa,Y1,) + 0(X1,Y2) + 0(X2,Y2) = 0. (2.31)
Denote the flow generated by Hr by F*. Now let (z,£) € ¥ and X, Y tangent at F*(x,£) € A. We have
o(X,Y) = (F*)'o((F)"X, (F°)Y), (2.32)

where (F2)* denotes the pullback. Note that (F!)*X, (F!)*Y are tangent at ¥. Using that the flow
generate by Hp leaves the symplectic form invariant so that

o(X,Y)=o((F)*X,(F)*Y) =0, (2.33)
which proves the theorem. O

Remark 2.5 This type of construction using the framework of symplecticity is exactly the one which will
be used in the construction of a v such that

Pm (x,0¢/0x) = 0. (2.34)

The above existence proof of solutions to (2.30) immediately shows why we cannot expect global solutions
in general. If integral curves of Hp cross, i.e. if F° is not injective anymore, then solutions break down.

Example 2.6 Let F be the principal symbol of the wave equation in R**L i.e. F(t,z,7,&) = —72 +¢|%.

We choose the initial datum v(x,y) =sinz +cosy on S = {t = 0}. Then Vv # 0 forxz € (—7/2,7/2) x
(=m, 7). Defining ¥ as above, we act with the Hamiltonian vector field

Hp = 2y/cos? z + sin® y% +2cosx% —QSinyagy. (2.35)

One can easily find two integral curves which cross in finite time.



3 The construction of GGaussian beams

For the pure construction of Gaussian beams, we do not need a distinguished time coordinate as we do
not have to think about going forward or backwards in time. Therefore, in order to ease notation, we use
x¢ = t until specified otherwise. In particular, we write = to denote (zo, 21, ...,z,) € R*L.

Let P(x,D) be a strictly hyperbolic linear partial differential operator of order m with real principal
symbol p,,(x,€) and let T’ be a smooth curve in R"*! which is given by z(s) for s € R. We are interested
in finding asymptotic solutions u(x, k) to the partial differential equation P(z,D)u = 0 which become
concentrated on I as & — oo. According to the Gaussian beam ansatz, we consider functions u of the
form

_ k() a1 (x) ay(z)
u(z, k) =e (ao(x) + p +- 4 N . (3.1)
As we want u to be an asymptotic solution to P(z,D)u = 0 we aim to find ag(x),a1(z),...,an(x) and
1(x) such that

P(z,D)u=0 (k™) (3.2)

for some large M. On the other hand, we also want u to become concentrated on I' as k¥ — oo and for
that reason, we would like to choose 1 (x) such that for all s € R

(a) ¥(xz(s)) is real-valued and

(b) Im %(m(s)) is positive definite on vectors orthogonal to &(s).
0%

We note that if both (a) and (b) are satisfied then u rapidly decreases off I' because |e"**(*)| looks like
a Gaussian distribution with variance proportional to £~! on planes perpendicular to I'. Thus, after
multiplying u by a k-independent function which vanishes outside a small enough neighbourhood of T’
but which is also equal to one on an even smaller neighbourhood of I", we obtain an asymptotic solution
to P(x,D)u = 0 which indeed becomes concentrated on T' as k — oo.

Moreover, the rapid decrease off T" which is implied by choosing #(x) subject to (a) and (b) is also used
in establishing (3.2). As we see later, the estimate (3.2) follows from the vanishing of P(z,D)u on T to
sufficiently high order.

Applying P(z,D) to the general form (3.1) gives

P(z,D)u = k™pm <x, 5‘125;0)) V@) o (z) + O™ 1) .

Thus, in order to achieve (3.2) we might want to try to find ¢ (z) such that p,, (x, g—i’) = 0. However, in

the geometric optics section, we saw that this could be too much to ask for as it might result in solutions

breaking down in finite time. It turns out that it suffices to have p,, (:Jc7 %’) vanish to high order on T'.

Let us now see what conditions we obtain by requiring that f(z) = p, (x, 8%?) vanishes to high order

on I'. Vanishing of order zero gives
Pm (2(s),£(s)) = 0 (3-3)
where £(s) = g—f(x(s)), whereas vanishing of order one yields (using summation convention)

oo O _ b, Opw O

(3.4)

along T" for i =0, 1,...,n. Before we have a look at the higher orders of f, we look at condition (3.4) in
more detail.

Since the principal symbol p,, is real, taking the imaginary part of (3.4) gives
0%y

f%xﬁg S m (s
0= 2 (a(s),600)) (1 522 (alo) )




Thus, for all s € R we need %’—g(m(s),f(s)) to be parallel to #(s) since otherwise we could find some
so € R for which Im &?;Twm(x(so)) was not positive definite on vectors orthogonal to @(sgp). After a

reparametrisation, we can then assume that

i(5) = 2 a(5).€(5)
for all s € R. Plugging this into condition (3.4) yields
_ Opm  day 0% Opm | day 0§
 Oxy ds Ozpdx;  Ox; ds Oz

0

from which we obtain that 5
: Pm
E(S) = —%(95(5)75(5)) .

Hence, we cannot construct a Gaussian beam along T', unless (x(s),£(s)) is a bicharacteristic curve, cf.
definition below.

Definition 3.1 A curve (z(s),n(s)) is a bicharacteristic for a linear partial differential operator P(x,D)
of order m if it is a solution of

(5) = B (a(s)(s)and i(s) = = 5 als)n(s))

where py, is the principal symbol of P(z, D).

It follows straight from the definition that p,,(x(s),n(s)) is constant along any bicharacteristic curve
(z(s),m(s)). This helps in dealing with requirement (3.3) in our Gaussian beam construction. Provided
that for the curve I' along which we want to construct a Gaussian beam the curve

(o(5). 6069 = (19, 51 )

is indeed a bicharacteristic, we only need to check if

Pm(2(0),£(0)) =0

to ensure that (3.3) holds for all s € R. Bicharacteristic curves which satisfy (3.3) are commonly referred
to as null bicharacteristics.

Hence, so far we have established that unless (z(s),&(s)) is a null bicharacteristic curve there is no
hope of constructing a Gaussian beam along I' = {z(s)}. Therefore, throughout the remainder of the
construction we shall assume that (z(s),£(s)) is a null bicharacteristic curve. Under this assumption we
are also guaranteed that @(s) # 0 for all s € R due to the following reasons. Since P(x,D) is a strictly
hyperbolic operator the polynomial

g(€0> = pm((ajnyla cee 7.7/'”)7 (g()agla e agn))
cannot have multiple roots for (&1,...,&,) # 0. In particular, from p,,(z(s),£(s)) = 0 it follows that

Opm
—(x(s),&(s 0
o (a(s),6(5)) 7
and therefore,
#(5) = 2 (a(s), 5)) £ 0

- 8§ ) )
as claimed. Moreover, note that for bicharacteristic curves (z(s),&(s)) condition (3.4) is only the com-
patibility condition

2
oY £i(s).

= X
J
amiaxj

&i(s)

10



oY(z)
ox

second order on I'. As we will see below this gives rise to a non-linear ordinary differential equation and
the crucial part of the Gaussian beam construction will be to show that one can solve this differential
equation globally. We want

_*f

B 8$j8.73i

_ *pm . Py 0% n *pp %Y Ppy, %Y 0% +_8pnz *1)
Ox;j0x;  0&,0x; 0x;0xy,  O0x;06, Ox;0x), 0§00, Ox;0xy Oz ;0T 08, Oxj0x10x;

Let us now consider what conditions we obtain by requiring that f(z) = pm (x, ) vanishes to

(3.5)

to hold along T for 4,7 = 0,1,...,n. Introducing the matrices

(M) = Goge (@) (A =GB ()€ . (B = Feh(a(s).€(5)

and o
DPm
C(s))ij = x(s),&(s
(Cis = gege (#(6),66)
one can rewrite the second order condition (3.5) as the matrix equation
T dM
0=A+MB+B M—l—MCM—i—g. (3.6)

Note that the matrices A(s), B(s) and C(s) are known as both the principal symbol p,, and the null

bicharacterisic curve (z(s),£(s)) are given. Thus, in order to have p,, (x, &gg)) vanish to second order

on I', we need to construct ¢ such that the matrix M (s) satisfies the non-linear ordinary differential
equation (3.6) globally on I'. This turns out to be possible due to (3.6) being a Ricatti equation for the
matrix M(s).

Moreover, when solving (3.6) for the matrix M (s), we want the solution M (s) to be symmetric, we need

M (s)i(s) = £(s)

to hold true for all s € R and due to the desired condition (b) on ¢ we also want Im M (s) to be positive
definite on the orthogonal complement of @(s). As we see below, it will be enough to ensure that M (0)
has these three properties.

To construct a solution to (3.6), we start by choosing matrix solutions to the linear system

Y = BY + CN

. 3.7
N=—-AY - BTN . (3.7)

By linearity, there exists a unique global solution (Y'(s), N(s)) to this system of ordinary differential
equations for any initial data (Y'(0), N(0)). Furthermore, if Y'(s) is invertible around s = sg then NY !
is a solution to (3.6) around sg. This follows from the calculation
d . .
E(NY*):AW”l—NYﬂYYd
s
=—-A-B"NY ' NY'B-NY 'CNY~'.

The good property of Gaussian beams is that you can choose the initial data (Y (0), N(0)) so that Y(s) is
invertible for all s. Let M be a symmetric matrix such that Im M is positive definite on the orthogonal
complement of #(0) and such that Mi:(0) = £(0). In the following sequence of lemmas, we establish that
if one chooses (I, M) as initial data then Y (s) is invertible for all s and M (s) = N(s)Y ~1(s) inherits the

three desired properties from M. In particular, note that we have



Lemma 3.2 Let (Y(s),N(s)) be the solution to (3.7) with initial data (Y (0), N(0)) = (I, M). Then it
holds true that

Proof. Using that (z(s),&(s)) is a bicharacteristic curve one computes

d . 82pm . 82pm ; . :
1 (@) = D06, %a&,fj = Byjij + Cij§;

as well as

. 2177,. 2’m
O 2

_axjawi YT 0€;0x; § = —Au; = (BT)ij & -

Thus, (i(s),£(s)) and (Y (s)&(0), N (s)2(0)) solve the same linear system of ordinary differential equations.
The equality of the two curves follows because we additionally have Y (0)z(0) = #(0) and

N(0)&(0) = M(0) = £(0)

due to our choice of M. O

For the next lemmas, we need the symplectic form o (x1, x2) acting on pairs x1(s) = (y'(s),n'(s)) and
x2(s) = (y%(s),m%(s)) of vector solutions to (3.7). The bilinear form o (x1, x2) is given by

olxixe) =y* -0 —y' 0.
Besides, we need the complexified form

oc(x1,x2) = o(x1,X2) -

Proposition 3.3 If x1 and x2 are vector solutions to (3.7) then both the symplectic form o(x1,x2) and
the complexified form oc(x1,X2) are constant in s.

Proof. The proof relies on the observation that the entries of A, B and C are real and that A and C are
symmetric. Differentiating the symplectic form with respect to s yields

d 7d 2 1 1 2
dsv(xl,xQ)—ds(y n—y'-n?)

=gty =gt =yt
— B Ot — 2 Ayt — 2 BT — Byl — Ot +yt - Ay? +yt - BT

which equals zero due to
T T
yl 3 Ay2 — (yl) Ay2 —_ (yl) AT 2 _ Ayl . y2 and 0772 . nl —_ Cﬂl . 772
(using the symmetry of A and C) as well as
By2 . ,',]1 _ y2 . BTTll and Byl . ,}72 _ yl 5 BT,'?Q .

By using that the entries of A, B and C' are real, one similarly proves the constancy of the complexified
form. |

Lemma 3.4 Let (Y (s), N(s)) be the solution to (3.7) with initial data (Y (0), N(0)) = (I, M). Then Y (s)
1s invertible for all s.

Proof. Let so be arbitrary and suppose Y (sg)a = 0 for some vector a € C"**!. The aim is to deduce that
a must then be the zero vector as this will imply that Y'(sg) is invertible.

12



Let us consider x(s) = (y(s),n(s)) = (Y(s)a, N(s)a) which has to be a vector solution of (3.7) because
(Y(s),N(s)) is a solution to (3.7) and a is constant. From the conservation of the complexified form it
follows that

0 = ac(x(s0), x(@= oc(x(0), x(0)) = y(0) - n(0) — y(0) - n(0)

By assumption, Im M is positive definite on the orthogonal complement of £(0) and therefore, the last
equation implies that a = 84(0) for some constant § € C. By using Lemma 3.2, we further deduce that

0 =Y (s0)a = BY (s0)2(0) = Bi(so) -
Previously, we have established that @(sg) # 0 and so it follows that 8 = 0. Hence, a = 0 and the matrix
Y (so) is indeed invertible. O
Thus, if (Y (s), N(s)) is the solution to (3.7) with initial data (Y'(0), N(0)) = (I, M) then
M(s) = N(s)Y (s)

is well-defined and therefore, it is a global solution to (3.6). It remains to prove that M (s) has all the
desired properties mentioned above. One of them is an immediate conlusion from Lemma 3.2 as we have

£(s) = N()#(0) = M(5)Y (5)(0) = M(s)(s)
for all s € R. The other two properties are covered by the following two lemmas.
Lemma 3.5 Let (Y (s),N(s)) be the solution to (3.7) with initial data (Y (0),N(0)) = (I, M). Then
M(s) = N(s)Y~1(s) is a symmetric matriz for all s € R.

Proof. The proof mainly uses the constancy of the symplectic form. Let y*(s), 0 < i < n denote the
column vectors of Y (s), let n'(s), 0 < i < n denote those of N(s) and let y;(s) = (y'(s),n'(s)). By
construction of M (s), we have n°(s) = M(s)y(s) and therefore, for any i,j € {0,1,...,n} it holds true
that

a(xi(s),xi(5)) = ¥/ (s) 0" (s) = y'(s) - 17 (s) = 4/ (s) - M(s)y'(s) — y'(s) - M(s)y’ (s) -
Due to the symmetry of M(0) = M and the constancy of the symplectic form, it follows that
Y (s) - M(s)y'(s) — y'(s) - M(s)y’ (s) = o (xi(s), x5 ()
= o(xi(0), x;(0)) = ¢/ (0) - M(0)y"(0) — y*(0) - M(0)y’(0) =0.
On the other hand, by Lemma 3.4 we know that the vectors y(sp), 0 < i < n form a basis of C"*! and

hence, the latter equation implies that M (s) is symmetric for all s € R. ]

Lemma 3.6 Let M(s) be given as in the previous lemma. Then for all s € R the matriz Im M(s) is
positive definite on the orthogonal complement of &(s)

Proof. This proof relies on the conservation of the complexified form oc. Fix sp € R and let y(sp) be an
arbitrary vector in the orthogonal complement of 4(sg). In particular, this means that y(sg) is non-zero.
Due to Lemma 3.4 there exist bg, by, ..., b, € C such that

y(s0) = Z biy'(s0)

where y'(s), 0 <4 < n are the column vectors of Y (s). Similarly, for n’(s), 0 < i < n, being the column
vectors of N(s), we introduce



As before, one can compute that

oc(x(s), x(s)) = 2iy(s) - Im (M(s)) y(s)

for y(s) = Y7, biy'(s). Moreover, if y(0) was of the form y(0) = Bi(0) for some constant 3 then we
would get y(so) = Bz(so) as a consequence of Lemma 3.2. However, this contricts our assumption that
y(so) lies in the orthogonal complement of #(sg). Thus, the vector y(0) cannot be parallel to ©(0). Since
M(0) = M is positive definite on orthogonal complement of #(0), it follows that

oc(x(0), x(0)) > 0

and hence, by the constancy of the complexified form

2iy(s0) - Im (M (s0)) y(s0) = oc(x(s0), x(s0)) = oc(x(0),x(0)) > 0.

As y(sg) was an arbitrary vector orthogonal to @(sg), we deduce that Im M (s) is indeed positive definite

on the orthogonal complement of &(s) for all s € R. O
In conclusion, provided that
Vo)
8zi8zj

is positive definite on the orthogonal complement of ©(0), we can make p,, (;v, 815555)) vanish to second

order on I'. This completes the crucial part of the construction of the phase .

aw( 2)

By all means, we may want to require that f(z) = p, (m ) vanishes on I' to higher order than two.

However, it turns out that this gives rise to linear ordlnary dlﬂerential equations with which it is easier
to deal than with the second order condition (3.5). More precisely, for any multi-index « of length r the
equations 0 = 09 f along I' are of the form

Opm 0

0=
(’)53

(aw) > capdltp+da (3.8)
|Bl=r

cf. [2], where the coefficients c,p and d, depend on the partial derivatives up to order r — 1. Since

Opm 002) _ d .,
9 or s oY)

we can solve the equations (3.8) as a linear system of ordinary differential equations in s. By linearity, there

exists a unique global solution to this system for any initial data. Thus, it suffices to prescribe 9 (z(0))
aw(@)
ox

for |a| = 7 to get the r'" order partial derivatives of ¢ on the whole curve I" which make p,, (x,

vanish to r*" order. We only need to take care of two things. Firstly, due to the dependency of ¢, and d,,
on lower order partial derivatives we need to determine the partials of ¢ recursively. Secondly, we need
to ensure that they satsify compatibiliy conditions such as

0% . d [ 0%
m(x(s))mk(s) =1 (6%8% (:c(s))) .

However, it suffices to choose the partial derivatives of ¥ to be compatible at 2(0) as they will then stay
compatible for all s.

Overall, we have established that we can make p,, (az, az(:)) vanish to arbitrary finite order on I" provided

that 3¢

14



where (z(s),£(s)) is the null bicharacteristic curve corresponding to T, as well as that

0?1

m 8:62835]

((0))

is positive definite on the orthogonal complement of #(0). Throughout the remainder of this section,

assume that p,, (33, a%:(:)) vanishes to finite order R on T'.

Having finished the construction of the phase ¥, we still need to determine the Taylor series of
ap(x),a1(x),...,an(z) along the curve I'. By going back to our ansatz (3.1), we see that the only powers
of k which P(x,D)u can contain are k™, k™1 ... k=N*1 k=N Thus, P(z,D)u is of the form

N
P(z,D)u = ( Z Cs(x)k_s> eik (@)

S=—m

for coefficients ¢_,, (), c_me1(2), ..., cn(x). We already saw that

Cem(z) = P <a: ‘Zi’) ag(z) .

To determine c_,,1(x), we need to have a look at how O(k™~1) terms occur in P(z, D)u. One such term
simply arises from the order m — 1 terms in P(z,D), i.e. one contribution to ¢_,,+1(z) is

poct (.52 ) anto).

where p,,_1 is the symbol for the terms of order m — 1 in P(z, D). Similar to ¢_,,, another term in c¢_,, 41

is given by
1o}
Dm (:c, aﬁ) ay(x) .

The last two terms in c¢_,,; arise from all the order k terms in P(x, D) acting on the ag(x)e*¥®) part
of u(x, k). To get a term of O(k™~1) we need k — 1 of the z-derivatives to act on e*¥(®) with the other
derivative acting on the product of ay and terms obtained by differentiating e**(*) with respect to z. In
total, one gets

1 (0pm oY\ Odag 1 0%*pm o 0% o
c-mi1(®) = 5 (agj (‘””’ ax) axj) * <ma§jagk (ﬂ”’ ax) duy0z, P (”C’ m)) @ (39

0
+pm (x) aff_) ai

comy1(z) = Lao + pnm (3?7 i) a .

which is of the form

Similarly, it is possible to show that

oY
C—m+r+l(x):Lar+pm (x’é)x) Gr41 + Gr r=1....,N+m
where g, is a function depending on v, ay,...,a,—1 and their derivatives and where a, = 0 for r > N.
Thus, determining the partials of ag, aq, ..., ay along I' again reduces to solving linear systems of ordinary

differential equations.

From (3.9) we deduce that whenever p,, (ac, g—i’) vanishes to order R on I we can choose the Taylor series
of ap on I" up to order R — 2 in such a way that c_,,+1(x) vanishes to order R — 2 on I'. Similarly, we
can choose the Taylor series of a,_1(x) so that ¢_, 1 (x) vanishes up to order R — 2r on T.

15



This nearly concludes the construction of Gaussian beams. As mentioned right at the beginning of the
section it only remains to multiply u(z, k) by a k-independent function which vanishes outside a small
neighbourhood & of ' but which is also identically one on a smaller neighbourhood of I'. This ensures
that u(x, k) really does become concentrated on I' as k — oo.

Even though we now finished off the construction of Gaussian beams, we still need to justify that we
actually met our original aim (3.2), i.e. we still need to show that u(x, k) is indeed an asymptotic solution
to the partial differential equation P(x, D)u = 0. For this, we make use of the following lemma.

Lemma 3.7 Let T > 0 be given and let c(z) be a function on R which vanishes to order S — 1 on
the curve T', some S > 2. Suppose both that suppc N {|zo| < T} is compact and that Tmp(z) > ad?(x)
on this set for some constant a > 0, where d(x) denotes the distance from the point x € R" ! to T'. Then
there exists a constant C such that

_ 2
/ ’c(m) @ dy < Ok5 /2
|zo|<T

Proof. In a neighbourhood of T' N {|z¢| < T} we can choose k-independent coordinates zg, 21, . . . , 2, such
that the curve I' is parametrised by zg = s,21 =0,..., 2, = 0 and such that we also have
d?(x(2) > 28+ + 22, (3.10)
Using these coordinates, we then introduce the k-dependent coordinates yo, y1, - .., Yn given by
Yo = 20 , y1:k1/2z1, cee yn:k1/2zn.

From (3.10) as well as our assumption on Im(x) we deduce that

‘exp (ik¢ (aj (yo, k_1/2y1, e k_l/Qyn)>)‘ < exp (—kad2 (LE (yo, k_1/2y1, R k'_l/Qyn)>)

§exp(—a(yf+~~~+yi))§1.

Finally, we want to change from z to y variables in the integral f|$0|ST |c(x) eikw(‘r)f dz. Since the
Jacobian of the transformation from = to z coordinates is independent of k whereas the Jacobian for
changing variables from z to y is equal to k~"/2, it follows that the new integrand is bounded above by

2
k2| (@ (o, k™ 2y, k7 2n) )| exp (20 (3 -+ 42))

2
< Ck_s_n/2 ‘k8/2c (.’17 (y07 k_1/2y17 IR k_l/Qyn)) ’
for some constant C. However, by assumption ¢ vanishes to order S—1 > 1 on I' and supp cN{|zo| < T'}

is compact. Therefore,
’kmc (fc (ym Py, lfl/gyn))(

remains bounded on supp ¢ N {|zg| < T} as k — oo and the estimate of the lemma follows. O

By a repeated application of Lemma 3.7, we are now able to estimate the Sobolev s-norm || Pul|s of
P(z,D)u on {|zo| < T}. Since ¢_ymyr(x), r = 0,..., N + m, vanishes to order R — 2r on I' the lemma
yields

/ ‘C_m+r(x)km—r oikv (@) 2 do < Cp2(m=r) ~(R+1-2r)=n/2 _ ~p2m—(R+1)—n/2
|zo|<T

provided we choose the neighbourhood ¢ which was introduced above so that Im(z) > ad?(z) for
x € 0N {|zo| < T}. By further using the inequality (wq + wa + -+ +w;)? < 2(w? + wi + -+ + w?), we

16



deduce that

1/2
HPuHO:/ Pu? de
|zo|<T
N
< (2 /
Z |zo|<T

j=—m

9 1/2
N

/||<T Z ¢j(@x)k™ | Y@ | dg
o[>

j=—m

1/2
2

¢j(@)k ™ V@ dg

< kaf(RJrl)/an/él ,

for some k-independent constant D. Noting that differentiating P(z, D)u with respect to = only multiplies
the coefficients ¢;j(x) by k or decreases the order to which they vanish on I" by at most one, we similarly
prove that

| Pull, < DEmHs—(BHD/2=n/4 (3.11)

Thus, if we choose R large enough then we can indeed achieve our aim (3.2).

We end the general discussions with a remark, whose importance will become clear in the propagation of
singularities section.

Remark 3.8 By going back to the Gaussian beam construction, one sees that it is possible to choose the
phase ¥ depending smoothly on (x(0),£(0)) as well as on its Taylor series at x(0) up to order R in a way

which makes py, (x, %) vanish to order R on T N {|zo| < T'}.

Similarly, each ar—1(x) can be chosen as a smooth function of its Taylor series at x(0) to order R — 2r,
the Taylor series of ag(x),...,ar—2(x) at 2(0) up to orders R—2,...,R—2(r — 1), respectively, and the
Taylor series of 1 at x(0) to order R.

Finally, one can also establish that the constant C in Lemma 3.7 is uniform both in (x(0),£(0)) and in
the Taylor series of ¥ and a,_1 up to orders R and R — 2r, respectively, provided that all the data in
consideration lie on a bounded set and that we have a uniform bound on the positive definiteness of

9%y
o @(0)

on the orthogonal complement of (0).

3.1 The construction for the wave equation

Having discussed the construction of Gaussian beams for a general strictly hyperbolic partial differential
operator P(z,D) we conclude this section by demonstrating the construction for the two-dimensional
wave equation

Pu  0%u  O%u

Qu=——+—=5+=5 =
"= T2 o

To be consistent with the notation used in the first part of this section, we again replace t by xy. The
corresponding principal symbol is then

0.

pa(z,6) = —E5 +ET+ 65

First, we note that the wave equation is indeed strictly hyperbolic because for any fixed (£1,&2) # 0 the
polynomial
9(60) = € + & + &

has two distinct real roots, as required. Thus, we can construct Gaussian beams along its null bicharac-
eristic curves. They are given as solutions of

io=—26, 4i=2& i=1,2, and £=0
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subject to the additional condition ps(x(s),&(s)) = 0. From € = 0 we deduce that &, & and & need to
be constant along any bicharacteristic curve, which further implies that z(s) is of the form

x(s) = (—2&ps, 2618, 2E2s) .

For instance, the curve

is a bicharacteristic which is clearly null.

We now restrict our attention to this specific null bicharacteristic curve and construct a Gaussian beam
along its projection I' which is given by (s, 0, s). Let us make the ansatz

u(z, k) = *¥ @ g4 (z) (3.12)

and as in the general construction, start by determining conditions on the phase ¥. We have already
ensured that (z(s),£(s)) is a null bicharacteristic curve. Furthermore, we need to satisfy

I : o 11
%(I(S)) =¢(s), ie. %(5,0,3) = (2,0, 2> (3.13)

as well as condition (3.6) which reduces to

2.0 0
M
OzMC’M—i—dT for C = 0 2 0
5 0 0 2
To solve the latter for
M), = 28 (as))
4 Q0

we first need to choose an appropriate symmetric matrix M (0). On the one hand, it needs to obey
' 1 0
M(0)z(0) = £(0), i.e. M@ (ol =10
1 0

and on the other hand, we also want Im M (0) to be positive definite on the orthogonal complement of
%(0) = (1,0, 1), which is spanned by (0,1,0) and (—1,0,1). It is straightforward to check that

bi 0 —bi
MO)=[0 a 0
—bi 0 b

is an admissible choice provided the constants a and b are both positive. To find the matrix M(s) it then
remains to solve the linear system

Y =CN, N=0

with initial data (Y(0), N(0)) = (I, M(0)). From N =0 we get N(s) = N(0) = M(0). Plugging this into
the first differential equation gives Y = C'M(0) whose solution is

Y(s) = Y(0) + sCM(0) = I + sCM(0) .

Thus, we obtain
M(s) = N(s)Y ~Y(s) = M(0) (I +sCM(0))"" . (3.14)

18



From the general discussion, we know that po (:c, &Sf)) will vanish to at least second order on I' if we

choose the phase 1 such that (3.13) and (3.14) are satisfied. An example of a function 1 with proper 15
and 2" partials on (s, 0, s) is

2. .2 2 2
To — Tp a*rory . a x| blxe — x0)
= —_— =4 —— ] . 3.15
Vlao,z1,22) 2 +1+4a2x3+1(<1+4a2$%> > T 2 (3.15)

aqg;a:)) vanishes even to third order on I'.

In fact one can check that with this choice of phase, po (:1:,

We now still need to determine the ag(x) in our ansatz (3.12). As in the general construction, we use
c_o41(x) = c_1(z) to find a function ag(z) which works. For j = 0,1,2 we compute

Ou _ ik 000 O 0 ik a
an 635]' 8xj

and

2
@ - eikw 82(10 + 21k 22 81/) aaO 1k7,b 4 kg 1[} 1k'¢1 ag — k2 <(91,Z)) eikw agp .

(“)x? 830? Ox 8 3 o

Collecting the terms in front of k then yields

2
]z: <2 0x; &rj i 002 ")

J

Due to
1 1 d
g—qﬁ(s,(), s) = (2, 0, 2) as well as %(s, 0,s) = g—;(o)(s, 0,s)+ g—zz(s, 0, s)
it follows that c_q(x) vanishes on (s,0,s) if and only if
dao
— — (O =0 3.16
0 () ao (3.16)

holds on T'. Since Y = —ia (1 + 2ais)71 for the phase v as given in (3.15), we can use separation of
variables to solve (3.16) for ag(z(s)). If we take ag(x(0)) =1 this simply yields

ao(z(s)) = (1 + 2ais) Y2, (3.17)

where the branch of the square root is chosen so that we really do have ag(x(0)) = 1. This fixes the
function ag(z) on all of I'. However, we need ag(x) to be defined globally or at least on a neighbourhood
of I". A choice of ag(x) which is consistent with (3.17) is

ag(xo, 1, x2) = (1 + 2aix0)*1/2 .

One can check that this makes c_;(z) vanish to first order on I', which is exactly what we need as
D2 (x, &g(;)) vanishes to third order on (s,0, s). Finally, from (3.11) it follows immediately that

10u(z, k)[lo = [| %) ag(x)[|o < DE?TO-GTI/272/4 = DE=1/2 = O(k~1/2) .

Thus, we found functions ¥ (z) and ag(z) turning (3.12) indeed into an asymptotic solution of the wave
equation which becomes concentrated on the curve (s,0,s) as k — oco.
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4 Reflections

We have seen so far that we can construct a Gaussian beam on R"*! satisfying the smallness criterion
|Pul|, < Ckmts—(BHD/2=n/4, (4.1)

In this section we want to consider boundary effects. Let therefore {2 be a bounded domain in R™ with
smooth boundary and D := R x Q. For i = 1,...,[, let B; be a linear differential operator of order m;
with principal symbol b; and impose the boundary conditions

Biu =0 (42)

on 0D = R x 9. If a ray path z(s) hits 0D at z(sg), then the Gaussian beam shall be reflected at x(sg)
according to the boundary conditions. For the reflected Gaussian beam, we start with the ansatz

! J
. a . X : a
u:elkw(a0+._.+k%)+zelkw (ag+.,.+k%>, (4.3)
j=1

where the first summand is given by the construction in the previous section. To carry out the construction
for the reflected beam, we need to make two essential assumptions.

Assumption 1 (Non-grazing hypothesis) Let v = (0,v') denote the inner unit normal to 0D at
x(s0). We assume that

t— pm(x(s0),&(s0) + tv) (4.4)
has m distinct roots in the complex plane.
Note that 0 is always a root because (z(sg),&(so)) is a bicharacteristic.

Example 4.1 When dealing with the wave operator O it becomes evident why this assumption is called
the “non-grazing hypothesis”. Letting ps denote the corresponding principal symbol and using the notation

&= (&,¢), we have

pa(z(s0), &(zo) + tv) = —[&o(s0)* + €' (s0) + tv/'|? (4.5)
= pa(x(s0),&(s0)) + 2t&' (s0) - V' = t(t + 2€ - v) (4.6)

since po(x(s),£€(s)) = 0 for all s. Thus the assumption is equivalent to £(sg) -v # 0, i.e. v - 2(sg) # 0,
which does not allow for beams hitting the boundary tangentially.

Remark 4.2 For all operators P, the non-grazing hypothesis implies

v -s0) = v+ B (a(o0). E(50)) 0. (4.7)

but is not necessarily equivalent to this.

Denote the real roots of (4.4) such that

[(y . ‘?g) (%@:)} (2(s0), £(s0) + 1) > 0. (4.8)

by 7,9 =1,...,ko. All purely complex roots appear in conjugate pairs. Label all purely complex roots
with Im7; > 0 by j € {ko,...,(m —k)/2}.

Assumption 2 Define a matriz b with components
by = bi(w(s0), E(s0) +730) (4.9)

fori=1,...0l, 5 =1,...,ko + (m — k)/2. We assume that rankb = l. Moreover, we assume that the
number of boundary conditions is | = ko + (m — k) /2.
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Let 1 < j < ko. Since 22 (2(s0), &(s0) + 7jv) € R, we can define the bicharacteristic curve

¢
Ly s (z(s),€(s)) (4.10)
starting at (x(so), {(so) + ;) via
. Opm . _%
T = 9 §= o (4.11)

Lemma 4.3 The ray path T'; moves forward in time, i. e. xg > zo(so) onT'; in D.
Proof. In terms of the bicharacteristics defined above, equation (4.8) reads as
(l/ . @(80))@0(30) > 0. (412)

Thus I'; enters D as xy increases. Strict hyperbolicity implies that

0(s) = P (2(5),(5)) # 0 (1.13)

and thus zg > zo(so) on I'; in D. O
Remark 4.4 Note that if xo(s) decreases as s increases, we follow the ray path backwards in s.

Lemma 4.5 Assume 1 < j < ko. Let ¢ =; on 0D and

O; _
87@(8)) =£(s). (4.14)

Then the function 1; can be chosen so that py,(x,0v;/0x) vanishes to order R on the curve I'; with

(e (I(S”>M (4.15)

positive definite on the orthogonal complement of &(s).

Remark 4.6 Note that our requirement on 0v;/0x is compatible with V|sp = Vj;lop since {(so) =
5(80) + T;v.

Proof. First observe that the compatibility condition

d olely;

T (n(s0),(50) + 739) = = 5 ()] g (4.16)

3

=((s0))

holds for the ath derivative of ¢; at x(s¢). In particular, this implies that ¢ (z(s)) € R by (4.14). As

0%
I 4.17
(g ) @17)
is positive definite on vectors orthogonal to #(s), but zero tangential to T', we find that
0?1
I 4.1
(g etoo0) (4.18)

is positive definite on the tangential plane to 9D on z(sp) which is not tangential to the curve by (4.7).
Since ¢; = on 9D,

)} (119)

i,k
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is also positive definite on this plane. We have already established that ¥ (z(s)) € R for all s, thus
(Im(9%4; /8x;0x1,)2(50))), , = 0 on vectors parllel to &. Therefore we conclude that

(15 (a(ou)) (4:20)

is positive definite on the plane orthogonal to I'; by the non-grazing condition

dpm

8Z)’I'VL
dt

23

v-i(so) =v (7(s0),&(s0) + T51) = (z(s0),&(s0) + T51) # 0. (4.21)

Now it is possible to perform the same construction we used to find ¢ in the previous section to construct

1; such that
Pm <x 005 > =0 (4.22)
xr

vanishes to order R on I';. Since (4.21) holds, equation (4.16) enables us to always express a derivative
in v direction by other derivatives. This was not an issue in the original construction since we started the
Gaussian beam at the time slice {zo = 0} so that the analogue of (4.21) was given by xo(s¢) # 0. O
To determine ¢; for ko +1 < j < ko + (m — k)/2 we can exploit a more direct approach.

Lemma 4.7 Let j > ko and assume ¢; =1 on 0D with

9Y;

5 (2(50)) = &(s0) + 70 (4.23)

Then we can construct v; such that pp,(x,0v¢;/0x) = 0 to order R. Moreover the Taylor series of 1;
around x(so) is determined uniquely and there is a ¢ > 0 and a neighbourhood U C D of z(s¢) such that

Imep; (x) > e|x — z(s0)[? (4.24)
forallz € U.
Proof. If py,(z,0%;/0x) = 0 up to order R and |a| < R, we have the expression

n 8|a|+1,¢]
ax‘laxi

2 (50) 2 (a(50), T2 (a(50))) + a2 (50)) (1.25)

0= 0%,

=0

where ¢, is a function depending only on 9!%l4, /927 for |B| < |a.
Since 1; = v on the boundary and

Opm
v- 875(33(50), &(so) +1jv) #0 (4.26)
by the non-grazing condition, this determines the Taylor series uniquely.
For the rest of the proof, assume that near xz(sg) the domain D is locally defined by x, and z(sg) = 0.
Then
Y,

Im%(x(so)) = (0,...,0,ImT;) (4.27)

and

(1 tatsa)) = (2l a(on) =4 (1.9

i,k
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for 0 <4,k <n — 1. Using the notation x = (2/, x,,), this yields

1
Imy; = (Im7;)x, + ix’ A 4 2, K -2+ O0(22) 4+ O(|z — x(s0)[?). (4.29)
Since A is positive definite and Im7; > 0, x,(Im7; — K) > 0 for |2/| < Im7;/|K|. Hence, for |z — z(so)|
small enough, there is a constant ¢ > 0 such that Im);(z) satisfies the inequality stated above. O
It remains to construct the coefficients a, ..., a’%y. For u satisfying the ansatz (4.3), we will write
N 1
Pu= > |k e+ ke | (4.30)
r=—m j=1

Since ¥ = 1; on 0D, we get

N
Bju= Y di(x)k e, (4.31)
rT=—"m;
Lemma 4.8 One can choose the Taylor series of aé, cey a?\, such that such that dj_ijrs vanishes to order

R —2s on 0D and &

—m-+s

R —2s at x(so) for j > ko.

(z) vanishes on T'; to order R — 2s for j < ko and ¢’

" mis(x) vanishes to order

Proof. Using the ansatz (4.3) and assuming that B; is of order m;, we get

N
Bju= Y di(z)k " e (4.32)
for j =1,...,1 on OD with
j oY Oy oy
., =b; <a:, 8w) ao + b (x, 896) ag+...+b; <:c, B zh (4.33)
l
oY i
= b, (x ax) ao + ; bjial (4.34)
and, for s > 1,
, o o1 o
ALy vs = b (x, (“)96) as +b; <I’ Bm) ag+ ...+ <$7 oz as + gjs (4.35)
!
X i
= bj (x’ f)x) as + Zzzl bjay + gjs, (4.36)
Where gjs is a function of a,,al,...,al for r = 0,...,s — 1 and their derivatives. Since b is invertible,

- — vanishing to order R — 2s determines the Taylor series of aJ uniquely up to order R — 2s.
For 1 < j < ko, we can use the method described in the previous section to chose the Taylor series of
vanishes to order R — 2s on I';.

ab,...,a)y on T such that ¢
For j > ko, we use the analogue for ¢’,, ., of equation (4.25) ot show that ¢’,, vanishes to order
R —2s at x(sp). O

As in the previous construction, the approximation is finished once we multiply the terms by suitable
bump functions in order to localise the solutions in space.

S

Theorem 4.9 The above construction gives

| Pul|, < Ckm+s—(B+1)/2-n/d (4.37)
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and
IBsull,, < C'kma+s'=F1)/2=n/4 (4.38)
where |||-||,, denotes the Sobolev norm of order s’ on D N {|zo| < T'}.

Proof. One can modify Lemma 3.7 to see that the contributions of

i [ al
Pel¥i (ajl+...+k]]:;>

for I > ko are of higher order in 1/k than than for I < k. For the latter (and for ||B;ul|,) we can use
the results from the previous section. (|

(4.39)

S

Remark 4.10 The constants in the inequalities are uniform fory = x(0) andn = £(0) in a neighbourhood
of an admissible value as in the previous section, although now this neighbourhood might have to be small
to avoid grazing.

Remark 4.11 By Lemma 4.3 all ray paths go forward in time and, since we multiplied with suitable bump

functions, none of these modifications made by us in this chapter to account for the boundary conditions
will influence the initial values at o = 0.
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5 Propagation of Singularities

One of the main differences between hyperbolic and, say elliptic, partial differential equations is (as-
suming all differential operators have infinitely differentiable coefficients) that they may admit solutions
which fail to be smooth. The notion of propagation of singularities arises when one studies that points
at which solutions of hyperbolic PDEs are not infinitely differentiable. The term propagation refers to
the way in which singularities at a given time tg translate to singularities at later times.

The Gaussian beam construction for strictly hyperbolic partial differential operators provides asymptotic
solutions to the related PDEs which are concentrated near ray paths, or projections of null bicharacteristic
curves. It turns out that one can use the construction, for an operator P, to prove that singularities in
solutions of Pu = f can only propagate along these paths. To demonstrate this, consider the operator
Pu = %: the solutions of Pu = 0 are the functions u which are independent of ¢. This means that there
exist solutions which vanish away from lines {(zo,t), t € R} for fixed 29 € R", and clearly in this case

the singularities of the solutions propagate along these lines.

The idea of a singularity of a distribution can be refined by studying what is known as its wave front set, a
concept introduced by Hérmander in [1]. As is now standard we will give our propagation of singularities
result in terms of wave front sets, and so the following section will consist of a brief introduction to the
idea and underlying theory.

5.1 Wave Front Sets
5.1.1 Fourier Transforms

The key motivation for the definitions that follow, is that for an integrable function on R™ we have a rela-
tionship between smoothness, and decay of the Fourier transform at infinity. This essentially arises from
the fact that for any f which is sufficiently nice, we have (D2 f)(€) = £*f(€) and (28 £)(€) = (=D)? f(€)
where a and 8 are multi-indices, and for computational ease we write D¢ = —i9*. In fact, as we will see
shortly, we can characterize smoothness of a function f in terms of bounds on f . This characterization
can be extended to distributions f € D'(R™), and motivates the definition of the wave front set in terms
of bounds on the Fourier transform.

More precisely, given f € L'(R") we define its Fourier transform by
~ 1 .
_ —iz.§
fi€) = Gyere [ 7 pa) o
and have the folowing results:

Lemma 5.1 If f € C§°(R™) then for each N € N there is a Cn such that
FOl<ova+ieh ™. (5.1)
Proof. This follows from the fact that if f € C§°(R™) then

(14 I F(E) = 2m) 2 [ e )Y o)

n

which holds since

(1 =2)"f)(©)

/ €1 = AYM f(z) da (5.2)

= f(z)(1 =AM emis gg (5.3)
R’!L
— (M / f(x)e € du (5.4)
ARTL
= BT (5.5)
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and the 2nd line follows by integration by parts, since the boundary terms disappear for f compactly
supported.

From here, writing

FO = A+1EPMA+IEPMF©) = A+ 1) ™M =2
yields the result, since f € C}(R"™) implies that (1 — A)Mf € L' and so ((1 — A)Mf)A(ﬁ) is bounded by
a constant depending only on M. O

Lemma 5.2 If f,fE L' and ]? obeys the estimates (5.1) then f(x) € C*(R™).

Proof. Since f, fare both in L! the Fourier inversion formula cite[Theorem 9.11]rudin

fla) = 0 [ fie)de ae

n

holds. Then for any multi-index

(-D.Pf@) = (@02 [ (- e fe)de (56)
= n [ aPflge (57)
= @0 REEHE (53)

where the estimates on f justify differentiating under the integral in line 1. The final expression is
continuous as z°f € L' (another consequence of the bounds (5.1)) and thus has continuous Fourier
transform. We have shown that all derivatives of f are continuous, and so have f € C°°(R") as required.

O

Theorem 5.3 (Characterisation of Smoothness) A function f € L}, (R™) is equivalent to a smooth

function in a neighbourhood of zq if and only if there is a non-negative function p € CF(R™) with
p(xzo) =1 such that

p1(©)
satsifies the estimates (5.1).

Proof. Assume that there exists such a p. Then pf € L' (since f € L) and E} € L' also, as a result

loc

of the estimates (5.1). By Lemma 5.2 this means that pf € C*°(R") and so f is equivalent to a C*°
function on a neighborhood of zg.

Conversely, if f is equivalent to a C°° function on a neighborhood of xgy then building p non-negative
and smooth, supported on this neighbourhood (wlog assume it is compact) such that p(zg) = 1 gives
that pf € C§°(R™). Then pf satisfies the estimates (5.1) by previous work. O

As mentioned before, this characterization can be extended to distributions f € D/(R™).

Say that f € D'(R™) is equivalent to a C* function g on a neighbourhood O C R if for all ¢ € D(O)

(f,9) =/n gpdx

and for p € C§°(R™) = D(R™) define - 4
pf(&) = (fipe™™%). (5.9)

Note that if f € D(R™) this corresponds to the Fourier transform of pf as before. With this set up, we
obtain the corresponding theorem:
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Theorem 5.4 f € D'(R™) is equivalent to a C* function on a neighbourhood of xq if and only if there
exists p as before, with pf(§) satisfying the estimates (5.1).

Proof. Suppose such a p exists, then (f?, ) = (f, pp) defines an element f? of £&'(R™) (since p is compactly

Py

supported.) Its Fourier transform fr € S'(R™) is in fact a function satisfying

Fo(e) = (fP,e715€) e

since we have, for all ¢ € S(R™)
(Fre) = (2.9 (5.10)

(7. [ e ie)ae) 6.11)
[ (e =yt ae (512)

where the final line is justified by the fact that f# is compactly supported. Note that this, along with
definition (5.9), means that

—

Fo(&) = pf(©)
for all €.

Now, since f? € §'(R™) (&'(R™) is a subset of this space) the Fourier inversion formula for &’'(R™) holds,
that is (see [4])

(2m)" fr = fr
where for ¢ € D(R"™), ¢(z) = p(—x) and for g € D'(R™), g is defined by (g, p) = (9, ¢)-

The Fourier transform of f; must satisfy, for all ¢ € S(R™)

(o) = (Fé) (513)

= [ T2 d (5.14)
= [ [ e o) o (515)

= [ ([ Foe=< ) oy (5.16)
n R’n,
where the final line uses Fubini’s theorem, justified by the bounds (5.1) on ;/)?(5) = ﬁ(f)

The same bounds give that [, ﬁ(f) e 178 d¢ is a C™ function of x (as in the proof of Lemma 5.2) and
S0 ﬁ = (2m)" fP, satisfies

(@m)"fr, o) = / gpdax

n

for some C° function g, and all ¢ € D(R™). Clearly this implies we have the same result for f*, with
corresponding smooth function ¢'.

Finally, since (f?, @) = (f, pp) for all ¢, we can deduce the existence of a function g such that for all ¢
supported in O C supp(p), a neighborhood of zg,

<f7¢>=/n§sodx
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ie. f is equivalent to a C'*° function in this neighbourhood.

Conversely, assume f is equivalent to a C'*°*° function on O a neighborhood of z(, so there exists some
function g € C*°(R™) such that
(fro) = / g

for all ¢ € D(O). Construct p € D(R™) non-negative with p(z¢) = 1 and supp(p) C O. Then

pf(&) = (fipe™™%) (5.17)

= / g(z)p(z) e ¢ do (5.18)

= (9n)(¢) (5.19)

where gp € C§°(R™) since both are smooth and p is compactly supported. Hence, by previous work,
pf(&) = (gp) (&) satisfies (5.1) as required. O

5.1.2 Definition

With this characterisation of smoothness in mind, we are ready to define the wave front set of a distri-
bution on R™. Recall that the singular support of a distribution is defined by

sing supp(f) = R"™ \ U 0.
O open
f=gsmooth on O

This is the complement of the largest open set on which f is equivalent to a smooth function, so contains
all the singularities of f. The wave front set of f, WF(f), is a refinement of the singular support in the
sense that it tells us not only where f fails to be smooth but also in which directions.

Definition 5.5 Let f € D'(R™) and (x9,&) € R™ x R™\ {0}. Say (xo,&0) € WFE(f) if and only if there

exists p € C§°(R™) with p(xg) = 1 and a conic neighbourhood N of & such that pf(§) satistfies (5.1) for
all{ € N.

Remark 5.6 We say an open set N is conic if € € N =t € N for allt > 0.

Note that that Theorem 5.4 tells us that if g € R™ is not in the singular support of f, then f is smooth
in a neighbourhood of zy and there must exist p € C5°(R™) non-negative with p(z¢) = 1 such that ;}”(f)
satisfies the estimates (5.1) for all £&. Thus for every &, € R™ \ {0} we can find a conic neighbourhood N
of &y such that //)}(f) satisfies the estimates whenever £ € N. This gives us that (zo,&y) ¢ WF(f) for all
& e R” \ {0}

Conversely, if this statement holds at zg, then in particular for each & € S™~! there exists some pe

satisfying the usual properties, and N¢ a conic neighbourhood of &, such that |p/§?(n)| < Cn@A+n)~N
for all n € N¢. The neighbourhoods N, for £ € S7—1 restrict to open neighbourhoods on the sphere
and thus form an open cover of S"~!. By compactness, there must exist a finite subcover {]\7 L N x} of
S7~1 where these sets correspond to conic neighbourhoods { Ny, - - - Ny} of points {{1, - - - £ } respectively.
Note that for each pair (x;, N;) we also have p; € C5°(R™) such that ;3(«5) satisfies (5.1) whenever
& € N;. Since all the p;’s are smooth, compactly supported, non-negative and equal to 1 at x(, the
function p = p; x -+ X pg also satisfies these properties. Moreover, for every £ € R™ \ {0}, we have that
I%I € S"1 and so I%I € N; for some i € [1,---,k]. In particular, % € N; and since each N; is conic, it
must be that £ € N; also.
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Since

51-777‘ <Cn(1+ |n\)7N for all n € IV;, a conic neighbourhood of &, there must also exist a further

conic neighbourhood N of € such that the same estimates hold for {;}(77) :nmeN } This is true because

p = Y;p; with ¢; = Hj £i Pj smooth, and from here we can apply an argument that will be detailed
shortly in the proof of Theorem 5.9. So for arbitrary £ € R™\ {0} we have a conic neighbourhood N, é of £

such that //)}(n) satisfies estimates of the form (5.1) for n € Né. Though the constants in these estimates
may depend on &, we can apply the same trick as above (finding a finite subcover of S"~1) to obtain
global constants Cy such that pf (&) < Cn(1+ €)™Y for all ¢ € R\ {0}. Hence, by our characterisation

of smoothness (Theorem 5.4) it follows that f is smooth in a neighbourhood of xq, ie. xg ¢ singsupp(f).
Putting this together we obtain:

Lemma 5.7
x € singsupp(f) & (x,&) € WFE(f) for some £ € R™\ {0}

so the wave front set is indeed a refinement of the singular support.

Remark 5.8 In the discussion of the previous section, the bounds | f(€)] < Cn(1+[€])~N were only used
to deal with the behaviour of the Fourier transform for large values of |€|. Therefore, we could equivalently
replace these with bounds of the form

IF(€)] < Cnlel™ forle] > 1. (5.20)

Indeed we will use this type of estimate in the sequel, to determine whether or not certain points lie in
the wave front set of a given distribution.

To justify this formally, note that for f € D'(R™) and p € C§°(R™), |;}(£)| is uniformly bounded in €,
and so since
(L+¢)~N >27N for|¢| <1 and

R
(i) =2zt

given the estimates (’;/)}(f)‘ < CN|§|’N) for [€] > 1 we may deduce estimates of the form (5.1).

5.1.3 Examples

In this section, some examples of wave front sets will be presented, in order to give a more intuitive idea
of what they are and how they can be determined.

To begin, we’ll consider a canonical example: the dirac delta function §y. Lemma 5.7 tells us immediately
that (z,£) ¢ WF(dp) unless z = 0, since d is clearly equivalent to a smooth function in the rest of R™,
and so we need only focus on this point. By symmetry, it is natural to think of §y as being singular in all
directions at the origin, and indeed the wave front set reflects this. We have:

WF(60) ={(0,¢) : € # 0}.

One can verify this statement easily, since for all p € C§°(R™) with p(0) =1

PO0(€) = (80, pe™ ) = p(0) = 1

which does not decay in any direction.

A slightly more interesting example, when directions are clearly distinguished, is the distribution u =
O{z,—0} in R? say, so

(u, ) = /@(58170) dxy
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for all p € C§°(R?). Clearly WF(u) = {(z1,0) : (&,&)} for some {(£1,&) # 0} by considerations
of smoothness and one might also guess, since singularities occur as you cross the x; axis, that the
directions {(&1,&2)} in the wave front set are those normal to it. With this in mind, the jump of u across
the x1-axis can be thought of as a wave front of the distribution, hence the title.

The above intuition can be substantiated formally, since for any suitable p with p(z) = 1 for some
x = (x1,0) we have

(Fope =) = [ plor0)e = oy
R
= ﬁ(€1,0)

where p(£1,0) is the Fourier transform of ¢(-,0) in the x; variable. But this is less than or equal to
|€1|~NCy for all N if and only if & # 0, so we have

WEF(u) = {((21,0),(0,¢2)) : & # 0}

as expected.

We can extend this idea to show that for D a domain in R™ with smooth boundary 0D, the indicator
function xp of D has
WF(xp)={(z,&) : z € 0D,&normal to dD}

and more generally, that if f € L{ _ is smooth up to a surface ¥ = {z : ¢(z) = 0,¢ € C*(R")} from
both sides then
¢

WF(f) C {(x,f) cx € szt(,h(x),teR\{O}}.

To prove this, you simply choose local coordinates which reduce the problem to the case of a function
jumping over a hypersurface of the form {x € R™ : 21 = 0} and from here the relevant fourier transforms
can be calculated and estimated easily.

However, one must be careful with more complicated distributions. For example, if you consider the
wavefront set of yg where S = {|z1| < 1,|xa] < 1} C R? is a square (so without a smooth boundary)
you discover that it consists of points (z,&) with « on the interior of an edge and £ normal to the edge
as usual, but also of the corner points x with corresponding £ taking any direction!

5.1.4 Effect of Partial Differential Operators

In order to discuss propagation of singularities, in particular to study WF(u) for u a solution to some
partial differential equation, we must first consider how applying a linear partial differential operator
affects the wave front set of a distribution. If the operator has smooth coefficients we have the following
pleasing result:

Theorem 5.9 If P is a linear partial differential operator with smooth coefficients and f € D'(R™), then
WFE(Pf) CWF(f).

Proof. We will begin by considering the effect of multiplication by a smooth funtion ¢ € C*(R™).
Once we have shown that WF (¢ f) C WF(f) the extension to arbitrary linear operators with smooth
coefficients is relatively straightforward.

Assume (g, &) ¢ WF(f), so we would like to show that (z¢, &) ¢ WF (¢ f). By definition, there exists

PN

p € C§°(R™) and N a conic neighbourhood of & such that pf(€) satisfies (5.1) for £ € N. Taking
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p' € C§°(R™) with p’ =1 on supp(p) and letting ¢’ = p’¢b we have

pWhE) = Vpf(©) (5.21)
= pf*1) (5.22)
= @0 / F)pF (€ —n)dn (5.23)

]Rn

where the first line holds since ¢ = ¢’ on supp(p) and the second follows from the convolution formula

o~

f*g(&) = f(&)g(&)
If f e L}, then \,3}(5)\ < O, since p has compact support implies pf € L'. Indeed, for any distribution

f € D'(R™) the bound .
pf()] < CA+[eh™

holds for some Ny € N. This is because, by definition of D/(R™), for any compact set K there exist
constants C, N such that

| ()| <C Y sup |97

la|<N

whenever ¢ € D(R™) has support contained in K. So letting K be a compact set containing supp(p) and
choosing appropriate constants Cy, Ny results in

pfE] = [{f,pe =€)
< G Y suplope |
[a|<No
< O(1+ [g))Ne

for some C' > 0.

Then, since ¥’ € C§°(R™) and thus satisfies (5.1), we can bound the final expression in (5.21). For any
6 > 0,R € N we have

«Z«n);}f(s—n)dn} < [ osre-man+| [ Twie-n
R™ 3|€]>1n| 3|€1<n|
< s |pfE- n|/ nldn+C (L4l (L+ 1€ — )™ dn
S1€]>1n| s1&l<|n|

where in the second integral of the final expression we have used the estimates (5.1) to bound |¢/(n)|
and the immediately preceeding remark to bound |pf (£ — )|

For any M > 0, one can check that letting R = M + Ny + n results in an upper bound on the second
integral of the form Cj;(1+ [€])™™ for some constant C);.

To bound the first integral, observe that since N is a conic neighbourhood of &j, there exists a § > 0
such that
-1 &

€—nl  |él

To see this, observe that N must contain & and therefore % (as it is conmic), and since it is a

<B=&—neN.

neighbourhood there must exist some § > 0 such that ‘(5 —n) — < B =& —n¢€ N. From here the

Eo|
result follows by using the conic property once more.
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Given such a 3, if |n| is small enough compared to |¢| we will have that

S-n _€|_B

- = = 5.24
€=l Tl <2 20
and so we can choose § < 3 such that 6|¢| > || implies that (5.24) holds.
Then if
£ &) 8
€l 1%l 27

by the triangle inequality we have §|¢| > |n| = ‘ﬁ — % < [ and so

sup ‘;}(5 - 77)‘ <Cu (14 )™
51€1>Inl

as required.

Therefore, {g : I%I _ %

the terms in our expression for |p(¢f)(€)| by Car(1+ |€])~M. Thus, |p(f)(€)] obeys the estimates (5.1)
on this neighbourhood, and so (z¢, &) ¢ WEF (¢ f) and WF (¢ f) C WEF(f) as desired.

< g} defines a conic neighbourhood on which, for all M, we can bound both

From here, the extension to an arbitrary linear partial differential operator with smooth coefficients

Pf=Y" ta(x)0"f

la|<m

is relatively straightforward. We have the identity

and so if pf (&) < Cy (1 + [€])~Y then

opf e

Lo = [eao)
< Onlgla+eh™™
< Cy(1+¢gh N

where the last line holds since [€;| < |¢| < 1+ || for all . This means that for each «,

/I?O‘\f(f) ‘ satisfies

estimates of the form (5.1) and so also, by previous work, does ‘p(@f)(f)‘ . Since Pf is just the sum

of terms v, 0% f and the Fourier transform is linear, the result follows immediately. O

Elliptic reqularity results give us that when P is an elliptic operator, the inclusion in the above theorem is
actually an equality. The key result from propagation of singularities is that when P is strictly hyperbolic,
it may well be a strict inclusion. In the next section, as discussed in the introduction, we will show that in
this case singularities must actually propagate along specific curves (null bicharacteristics) corresponding
to the operator.

5.2 Propagation of Singularities

We will now use the gaussian beam construction to prove a propagation of singularities result for strictly
hyperbolic differential operators. The object of our attention will be the behaviour of singularities of wu,
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the solution to the mixed problem:

Pu=f onR, x Q

Biu=g; onRy x 0Q i=1,---,1
o'
ott

=h; on{0} xQ i=0,---,m—1 (5.25)

where the B;’s are some linear differential operators. From now on we will denote elements of Ry x Q
by (t,z1, -+ ,Zn), and directly apply the results of the previous section with this change of notation.

In fact, we will actually use the gaussian beam construction for the adjoint operator P*. By this we mean
by this the unique differential operator such that

/ vPu = / P*ou
Rn+1 Rn+1

for all u,v € C§°(R"1). Observe that since they are real valued, the principle symbols of P and P*
coincide. In particular, this means that P* is strictly hyperbolic, and so subject to the necessary as-
sumptions, our gaussian beam construction is admissable for P*. To formulate the corresponding mixed
initial-boundary value problem for P* we also need some adjoint boundary conditions

Bfv=0i=1l+1,---m

to those given in (5.25). These are defined to be linear operators such that

l m
/ (EPufmu) dx :/ CivBu + Z BrvCu | dx
Rx Rx 092 1

i= i=l+1
holds for some linear operators Cj,i = 1,---,m and all u,v € C§° (R™*+1). The simplest example, and
we will use it later on, is when B;u = g%iﬁ‘ for i = 1,---1 and % is the normal derivative to the

boundary 0f2. In this case, we can obtain by integration by parts that the adjoint operators are given
i—1
by Bfv=%-2%i=1-",m—1L

As is a standard approach in PDEs when working with the adjoint operator, we will consider solutions
starting at some fixed time 7" > 0 and extending into ¢ < 7. In our case, this means considering ray
paths starting at a point (z,7) and moving backwards with respect to time.

So, given (x,€) € Int(f2) x S"~!, and noting the new representation p,,(t,z,,&) for the principle
symbol corresponding to the distinction of the time variable, we let {7i,i = 1,---m} be the roots of
P (T, 2,7,€) = 0 and follow the null bicharacteristics eminating from (T, z, 7;, ) backwards into ¢t < T.
Whenever we reach a point (#,2',7/,¢') with 2’ on the boundary 99, as in the construction of reflected
gaussian beams, we then move along null bicharacteristics starting from (¢/,z’, 7/, &) where & = &' + s;v
are the real roots of p,, (t',2',7/,& + sv) = 0 such that

Opm Opm

0>v =5 ar

(', 7,8 +s;v) (526)

and v is the inner unit normal to 9. Observe the sign in the condition (5.26) is opposite to that in
the reflected gaussian beam construction. In that case, the condition ensured that the ray paths would
propagate forwards in time, and applying the same reasoning we get the opposite from (5.26), which is
precisely what we want. If we reach a point where there are no admissable s; then we stop, otherwise
continue until reaching time ¢ = 0, and end up with a collection of points

(Ovyiv’rivgi)
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at the end of the ray paths. These are the time 0 data for the shower produced by tracing backwards
from (7', z,§).

We make the following assumptions on this procedure:

e all bicharacteristics in the shower never graze. So for all (¢',2,7/,¢’) in the shower with 2’ € 09,
the polynomial p,, (t',2’,7/,& + sv) = 0 has m distinct roots in C.

e all bicharacteristics in the shower either stop (in the case that there are no admissable s;’s) or reach
t =0 in a finite number of reflections.

oy, € Int(Q) fori=1,--- M.

e the adjoint boundary conditions satisfy the second assumption we required for the construction of
reflected gaussian beams, ie. the matrix (b*);; corresponding to the B;’s has rank m — I.

Observe that these assumptions will allow us to construct reflected Gaussian beams for the adjoint
problem, which will be our key tool.

Given the above, the following theorem holds:
Theorem 5.10 (Propagation of Singularities) Suppose v € H™([0,T] x ) satisfies (5.25) and
o (y;,&) ¢ WF(hj) fori=1,--- M and j=0,---m — 1.

o Forall (t',2',7',&") in the shower tracing back from (T, xz,§) with ' € 0Q, the g; are smooth in a
neighbourhood of (t', ') for j =1,--- 1.

o supp(f) C Int([0,T] x Q) and WF(f) does not intersect the shower.

Then (z,§) ¢ WF ( %;Z.‘ (T, )) forr=0,1,--- ;m—1 and hence from (5.25), for all r.

Recalling Theorem 5.7, this means that  can only be a singularity of w at time T if, tracing back along
the null bicharacteristics from (7', z, £) for some direction &, there is a singularity of f at an earlier time
or of the initial/boundary data. So, as alluded to earlier, singularities can only propagate along ray
paths. Note also that we have used a smoothness hypothesis for the g;’s in the statement of the theorem,
rather than an assumption on their wave front sets. The theorem extends to the latter case, as has been
shown by Hormander [1], but requires definition of the wave front set for distributions on a manifold (ie.
R x 99.) In this case, the wave front set can be defined as a subset of the cotangent bundle, but we will
not go into details here.

Proof. To begin, choose § > 0 small enough so that whenever | —¢| < § and |’ —z| < J, the properties of
the shower obtained tracing back from (T, z’,¢) are the same as those of the shower from (T, z, ¢). Then,
for any (z',€) each within & of (z,£) apply the results of the previous section for the adjoint problem. That
is, given N, construct Gaussian beams w(t,z; 2’ &, k) (corresponding to null bicharacteristics starting at
(T,2',71;,) for {r;,5 =1,---m} the roots of p,,(T,2’,7,&) and evolving backwards in time) such that

(i) [[P*wllo < CE~N
(ii) || Bfwlo <Ck™N i=1+1,---,m

(iii) H%(T,x)”o <CkN r=0,---,m—2and
| Gt (@0, ) = kg (@) exp (kg — lo — ') | < oY

for ¢ € C§°(|x — z| < d) with ¢(z) = 1.
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So for time close to T, before any reflections have occured, w is of the form

m ' j
S (g -
j=1

for some 7, where

8¢j ’ al/’j NY — (. (1
((%(T’gj )’ W(T,x )) = (T](:I" ?6)75)

and the 7;’s are as described above.

The assumptions we’ve made ensure that the gaussian beam construction as in the previous section
is admissable for P*, and so we need only check that it is possible to obtain condition (iii). Recall
from the construction, that to ensure closeness of w to the given initial data (in this case meaning
at time t = T), we need only prescribe the Taylor series of the coefficients a’(T,z) at fixed time T,
about the point 2’ appropriately. Differentiating ¢ times (¢ = 0,--- ,m — 1) the expression (5.27) with
respect to time, evaluating at T and either insisting that this vanishes to high order at z’ or agrees with
k™ 1o (x) exp (ikx.f — §|x — m’|2) for i = m — 1, we see that the Taylor series is determined by equations
of the form

Z (Tj(x/’g))i ai(Tv xl) = 9ri (528)

for each i, 7. Here the g,;’s are determined by ¢, the 9;, and a’, for 7' < r.

So we see that we must solve inductively in r systems of the form
Aa, = g, (5.29)

where A;; = (Tj(x,f))i, (ar); = al(T,z) and (g,); = gr; as above.

However, by the strict hyperbolicity assumption, the 7;’s are distinct and so the matrix A is a Vander-
monde matrix. This means that the above system (5.29) is uniquely solvable, and so our construction
of w is justified. Referring back to the previous section we also know that w is smoothly dependent on
(2',€), and so provided ¢ is small enough we may assume that the constant C' in (i)-(iii) is uniform in
lz — 2’| <9, £ =& < 0.

Now, since  and the y;’s lie in the interior of £ by assumption, and w is concentrated around the (z,t)
projection of the shower tracing back from (T,x,&) to the (y;,&;)’s, we can take w to vanish near the
corners {T'} x 9 and {0} x 0. Applying integration by parts, since u € H™([0,T] x ), we have

/ wf = / wPu
[0,T]x [0,T]xQ

/ Prwu + / M(u,w,v)
[0,T]xQ [0,T]x 89

+ / M(u,w,e;) + / M (u,w, —ey) (5.30)
{0}xQ {T}xQ

where v is the normal to 9 and M, M, M are expressions determined by the order in which we do the
integration by parts. Observe the absence of boundary terms from the corners, due to the assumption
on w made immediately before.

By definition of the adjoint operators B} we see that

l m
M(u,w,v :/ CiwB;u + BlwCiu 5.31
/[O,T]x aQ ( ) [0,T]x 99 (Z Z ) (5:31)

=1 i=l+1
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where on 0f) we have B;u = g; for each ¢ by assumption. Furthermore, recall from the previous discussion
i—1 i—1
that the adjoints of operators B;u = %, i =1,---,l are given by Bfu = %, i=1+1---,m.

Applying this with % = % in the case | = m gives

Mu,w,e :/ E,wh;
~/{O}><Q ( t) {O}XQi:Zl

(h; = % on this domain) and with [ = 0 gives

m 67‘ 1w
(s, 20 =
/{T}xQ T}XQZ ot= 0

for some differential operators £ and D.

Although we will not need much information about these operators we can calculate, simply proceeding
with the integration by parts, that since the coefficient of % in P is assumed to be one, we have

Dpu = (=1)""1u.

Putting the above together and rewriting (5.31) with the equivalent expressions for each term, we obtain

/ wf = / Prwu (5.32)
[0.T]xQ 0,7]x

Ciwgi BiwC; .
+ /OTXBQ<Z wg; + Z *w u) (5.33)

; i=l+1
+ / h; (5.34)
{0}><QZ:Z1
"L 91y
+ / D;u 5.35
{T}XQ; oti—t (5.35)

By condition (i) in the construction of w, we have that (5.32) is O(k~"), and by condition (iii) along
with the observation that D,,u = (—1)™ tu, (5.35) is equal to

(=™t /m JEo) elbe =5 lo=e Ty (p, ) do + O(k ™).
X

Furthermore, since our constants in (i)-(iii) were uniform in [z’ — z| < § and [£ — £| < §, these O(k™™)
are uniform for =’ in a neighbourhood of supp(¢) (¢ € C5°(|Jz — | < 0)) and |[€ — &’'| < §. To estimate
(5.33) and (5.34) similarly, we need the following Lemma:

Lemma 5.11 Assume @ # 0 and ( )(xo) = & with (zg,—&) ¢ WF(u) for u € L} . Assume

¢ € C§°(R™) and Imyp > 62|3: — x0|? on the support of ¢. Then there are constants C such that

‘/eikw oudxr

Moreover, if 1 depends smoothly on parameters y,n, so

< Cnk™N (5.36)

for k>0 and N € Z.

0
b= b(esn) and S os o m) = o,

then the constants in (5.36) are uniform for (y,n) in |y — yo| < do and |n — no| < do.
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We will use this for now without a proof, which will be postponed to the end of the section.

The Lemma can be applied immediately to show that (5.34) is O(k~V) (uniformly for 2’ in a neighbour-
hood of supp(¢) and |§ — | < ). This is because, for each i in the sum, Ejwh; is an expression of the

form o
Z ¢ e Wi p, (5.37)
J

where ¢; € C3°(R™) and each 1; comes from the expression for the reflected gaussian beams (the
sum is over all ray paths in the shower tracing back from (7', 2’,¢)), evaluated at time ¢ = 0. Observe
that we have e '*¥i here, rather than e*¥i as in the expression for w, which is due to the fact that
we have complex conjugated w in (5.34). Since these ray paths end at the points (y;,§;) for each j,
by construction of the gaussian beams we have Im(—v;) = Im(v;) > |z — y;|> on supp(¢;) and

# 0 and finally by our original

(6(57;/;1)> (y;) = —&;. Moreover, by the non-grazing hypothesis 6(57;/51)

assumptions, (y;, —(—¢&;)) = (y;,&;) ¢ WF(h;) for each ¢, j. Thus, applying the Lemma directly gives us
the required result.

A little more care is required for the term (5.33), although the principle is the same. The term
f[o )% 60 it BiwCiu is O(k~™) by condition (ii) for w, and so we need only deal with

The slight difficulty here arises from the fact that we are working on the boundary 9Q x [0,7T]. To deal
with this we introduce local coordinates 1, - ,yn—1 on 9Q and write g; = ¢; (¢, z(y)). As above, we can
then write the expression inside the integral as

Z gV g;
J

for phase functions ¢; = v,(¢, z(y)), where everything in the Lemma holds trivially by construction of the

gaussian beams except that ( ag,ﬁj , a;;j ) # 0. The wave front set condition comes from the assumption that

the g;’s are smooth at all points (¢#,2") such that (¢/,2’,7',£’) are on bicharacterstics in the shower with

2’ € 99. Clearly this implies that (¢, 2'(y), — 861/27' ,— 8;;) ¢ WF(g;)Vi. To verify that (agf, 381/;) #0

note that (g—z) has rank n—1 and v - g—fl = 0 since the y’s are coordinates on 02 and v L Q. Therefore

Oy OY;\ _ O O\
(5 ) =0= (5 5y ) =0

for some «, but this is not allowed as a result of the non grazing hypothesis. Hence, we may apply the
lemma to deduce that the (5.36) is O(k~V) uniformly for 2’ in a neighbourhood of supp(¢) and |[{—¢| < 4.

Putting this all together we obtain that
- m—1 m—1 : k /12 -N
wf=(-1) Em p(x)exp | —ikx. — —|z — 2| | x u(x,T)dx + O(E™) (5.38)
[0, T]xQ Q 2
where O(k~) is uniform on the set described above.
Moreover, by modifying the Lemma slightly (as will be discussed in the proof) since it was assumed that

the wave front set of f does not intersect the shower, we get that for given ty € (0,7) there exists an
e > 0 such that for p € C§°(|t — to| < €)

‘ / pw f
[0,T]x 0
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Using the two expressions (5.38) and (5.39) above, we see that

/ o(x) exp (—ikx - ﬁ|x - x’|2) w(z, T)de = (=1)""! / wf +O0(k™N)
Q 2 (0,7 x 2
< Cnk™V (5.40)

where the final inequality holds since we claim that we can find constants Cn such that
J of <Cnk™V.
[0,T]xQ = YN

One can verify the claim as follows: take &; as in (5.39) for each t € (0,7) and form an open cover
{(t—es,t+ey) :t€[6,T—0"} of [§',T—0'] where ¢’ > 0 is chosen so that supp(f) C [¢',7 — '] x Q0. This
choice of ¢’ is permissable due to the assumption that the support of f lies in the interior of [0,7] x €.
Let {(t} — Etis th + €y) ¢ @ € I} be a finite subcover and then take a partition of unity {p;}icr such that
each p; belongs to C§° (|t —t§| < g;) for some i. Suppose in (5.39) we have constants C%, corresponding
to t{ for each i € I. Then
Joa®
[0,T]xQ

/ Z piw f
0,71xQ “T

Z / piw f
[0,7]xQ

I
< > onkN
1

= CN'NkiN

IN

for some constants Cly, where the first equality holds since {p;}scs is a partition of unity of [6/,T — &']
and f has support contained in the interior of [§',T — §'] x Q by assumption.

As usual, we can choose the constants Cy in (5.40) to be uniform in a neighbourhood of supp(¢), which
we'll denote by O, and for [ — | < 6. Thus, multiplying by k™/? and integrating over all z’ € O we see

that
(z) e ket (k"/Q/ e~k /2lz—a'|? dx’) u(z, T) dx
o

Note that from now on the constants Cy will vary from line to line.

< COnk— Ntz

Q

2
If we let C' = [, e dy and make the change of variables y = vk(z' — z), we obtain that

‘(b(l‘) (C - kn/Q/ e—k/2|x—x’|2 daj/)‘ = (b(SU) k’"/g/ e_k/Z\x—x'\z dx’
© R\O

< CNkiN

uniformly for z € R™. This holds since the expression is only non-zero for 2 € supp(¢) and the region
of integration (outside of O a neighbourhood of supp(¢)) is a fixed distance away from z. But from here
one can easily deduce, using the triangle inequality, that

C / () e ko Ey(x, T)de| < / ¢(x) exp (—ik:x &= §|x - x’2> u(z,T) dz
Q Q
+ / o(x) (C — k”/Q/ e~ k/2e—a'® dm’) e RSy (x, T) da
Q o
< CNk—N+n/2
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where the bound on the first term comes from (5.40) and the second from the above and the fact that
e~ =& helongs to L' (plus multiplying by &™/2 which is allowed since it increases the bound.)

Thus, altering and relabelling the constants Cy <> Cy_,, /2, we reach the conclusion that

Ye RS y(x, T) dx| < Onk™N (5.41)

for each IV, uniformly for [£ — &| < ¢. Hence, letting k = || and applying the above to we get that

£
€1

Ty (©)| = [ oo =< ute ) o] < vl

forall £ e N = {f : ’% — é‘ }, a conic neighbourhood of §. Recalling the definition of the wavefront set,
along with the subsequent remarks, this implies that (z,£) ¢ WF(u(xz,T)).

So now, all that is left is to show that (z,€) ¢ WF (
the case r = 1, and return to the expression

foa®
[0,T]1x

‘Z;? (T, )) forr =0,---,m — 1. We'll first consider

l

P*wu + / iwgi + BwCiu
foe m(z 3 sreca)

1=1 i=l+1

31 1w
+ / E,wh; +/ D;u.
{O}XQZ (T}xQ 8tl ot

i=1

Considering the integration by parts procedure by which the operators D; are obtained, we have that

u

Dm_lu = (_1)m—2 ot

+ F(u)
where F' is some operator which depends only on the z-variables. By the above proof and theorem (5.9),
(z,6) § WEu(T,-)) = (z,8) ¢ WE(F(u(T,-)))
and so we can choose ¢ with ¢(z) = 1 such that
|pe € P(u)(z,T) dz| < Cyk™N (5.42)

uniformly for [ — £| < 6. Constructing a new Gaussian beam w such that

HZ:(T,J:) < Cnk N o<r<m-—-1,r#m-2
0
oM 2w
H8tm—2 (T, x) — k™ 2¢(x) exp (ikx & —k/2x — 3:’|2) < Onk™N
0

we can use exactly the previous argument, with m — 1 in place of m, to show that

)efi]”‘§ Dm_lu(:r,T)‘ < Cnk=N.

Substituting in the expression for D,, ju and using the triangle inequality with (5.42) shows that (z,) ¢
WF (%(T7 -)) as required. For r = 2,---m — 1 we may apply the same reasoning inductively, considering

the operator D,,_, in each case, to reach the conclusion.
|
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In order to complete the proof of the theorem, we must now prove Lemma (5.11).

Recall that we are trying to prove the existence of constants Cy such that

‘/eikw oudzr

assuming that M} # 0, ( ) (z0) = &o and (zo, —&o) ¢ WF(u) for u € L, along with ¢ € C§°(R")
and Imy > 02|:v — 20|? on supp(®).

< Cyk™N (5.43)

Proof. Firstly, by the assumption that (xg, —&o) ¢ WF(u) there must exist p € C§°(R") with p=1 on a
neighbourhood of zg such that

pu(§)] < COn (141~ (5.44)
for all £ satisfying
£, &
= 4+ == < 6.
& Teol

Here we recall from the previous proof that any conic neighbourhood of —¢; contains such a set of £’s.

Since gw( 0) = &o, by continuity we must have that 81/’ () is close to & for |z — 20| small. Furthermore,

|k&o + &% > é(k% + [€]?) for > & and so if f is in this set, and |x — z¢| < ¢’ for ¢’ small enough

‘m &

then
‘ g‘i( ) > c(k® 4 €%), ¢ > 0. (5.45)
Define the operator
(Bw)(z) = (27T)*”/2/e””E b(§)w(€) d§ (5.46)

where b(€) is chosen to vanish when ’ i | Teol

¢ and when |¢| < 1/2, and be a homogeneous function

of degree 0 for |£] > 1, equal to one when ’\&\ + | |

vanishes for all £ such that the estimates (5.44) may fail to hold, and so that (5.45) holds on supp(b) for
all appropriate x.

construction is to ensure that (1 — b(¢))

Choosing py € C§°(|x — 20| < &) with pg = 1 on a neighbourhood of z, write

/eikw ou = /eikw(l — pop)Pu dx (5.47)
4 [ e (o~ Blou) (5.48)
+ /eikw ¢poB(pu). (5.49)

The goal will be to bound each of the above terms by {Cxk~" : N € N}, and then the result will follow.
The first is straightforward since pgp = 1 on a neighbourhood of xy implies that (1 — pgp) = 0 on that
neighbourhood and therefore Imt) > r > 0 on supp((1 — pop)¢u). Thus the term e'*¥, which has modulus

e FmY < o=k allows us to deduce bounds of the required form.

For the second, note that since (1 — b(£)) = 0 for all £ such that the bounds (5.44) may fail to hold

(2m) /2 / &€ (1 — b(€))pule) de

40



converges and is equal to f = pu — B(pu). Using the bounds and differentiating under the integral, we
therefore have that f € C*°(R"™).

Defining an operator L by
_ [0 oy o

| Ox or Oz’
it is trivial to check that Le'*¥ = ike'*¥ and so for any N (5.48) is equal to

Lw

(lkl)N /(LN eik¢)¢pof dr = ﬁ /eikw(Lt)N(d)pof) da. (550)

This clearly also satisfies the necessary bounds, so we have dealt with (5.48).

Finally we must estimate (5.49), for which we employ a similar method. We would like to write it, by
definition of B, as

—

(2m) "2 / dx / SHETHD) oo (1) ()b (€) (pu) (€) d

but problematically, the integral in £ may fail to converge. However, if we instead consider the restriction

—

of (pu)(§) to || < R, denoted by (pu)z(£), and exchange them in the above expression it then becomes
valid. Letting L be defined by
-2 -
o ow
k— et
( Oz + €> Oz

we have LM (e!(®-&+k¥)) — M ol(@-6+kY) for all M and thus

or

—

(2 2 [ do [ €0 o)) () ) d =i [ [ eI (8 )b(E) (€ e
for all R.
Since 'k%(z) + 6‘2 > c(k? + |£)?) for z € supp(p) and £ € supp(b), we have

(LY (po)| < CO8? + [€]?) /2

which means that we can bound ei(f'w‘*"“")(Lt)M(p()(b)b({)(p/J)R(f) uniformly in R by an integrable func-
tion. Thus we may apply dominated convergence to deduce that (5.49) is equal to

lim i / da / SHETHRD) (LM (0 b)b(E) (o) (€) dE = iV / dz / SHETHR) (LM (00 80(E) (pu) (€) dE.

R—o0

which obeys the estimates (5.43) as required.

So we are left with the task of showing that the constants in (5.43) are uniform for (y,n) in
|y = yol < do,|n — mol < o if ¥ = w(aiy.n) such that F2(xo;y0,7m) = & depends smoothly on
parameters. We must also discuss how the proof can be modified to attain (5.39).

For the former, observe that all we need show is that we can find some §; > 0 such that whenever
ly — yo| < do and |n — no| < do we have:

e given 0 > 0 there exists §' > 0 such that |z — z¢| < ¢’ and ’% + éﬁ

> g imply that

L +f] > ¢ (K + [¢%)

1/2
Oz ’

(5.51)
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e given 6> 0 there exists 7 > 0 such that Im(¢)(z;y,7)) > r > 0 on the support of ¢ whenever
|z — o] > 0.

This will be sufficient, as these were the only conditions used in the proof.

To see that the first condition is possible, simply note that by continuity we can choose ¢’ small enough
such that |y — yo| < ¢, |n —no| < ¢’ and |z — xo| < ¢’ imply that %(x;y,n) is sufficiently close to &g
for (5.51) to hold for relevant &. The deduction of (5.51) given that %(x; y,m) ~ & follows exactly as
before.

For the second, assume that Im(v(z;y,n)) > clz — z(y,n)|*> on supp(4) for some smooth z(y,n)

with 2(yo,70) = xo. This means that we can find §" sufficiently small that |y — yol,[n — mo| < 6" =

z(y,m) — zo| < §. Then |z — 0| > & = |z — z(y,n)| > 3 and so Im(Y(z;y,7)) > c($)? = 7 on supp(¢).

Hence, combining the above and taking 6y = min(d’,6"”) gives the required result.

Finally, to achieve (5.39) from the proof of the Theorem, we use a similar idea. Our goal is to show that
given to € (0,T") there exists some ¢ > 0 such that p € C§°(|t — to] < ) =

/ pw f
[0,T]x

By the assumptions made on w and f, we know that at the fixed time tg, (@f)(to,-) is of the correct
form and satisfies the conditions needed to use the Lemma. That is, (@f)(fo, ) can be written as a sum
(over all null bicharacteristics in the shower), with each term corresponding to some v, ¢ and (zg, &) in
the shower at time tg, to which we can apply the Lemma. For simplicity we will consider only one term,
the full result following trivially.

< COnk—N.

Take ¥, ¢, (x0,&) as fixed, corresponding to some null bicharacteristic at time ty. Again by smooth
dependence, this time of both ¥ and f on ¢ (before we only considered ), we can find € > 0 small
enough that whenever |t — tg| < ¢,

e given § > 0 there exists ' > 0 such that |z — x| < ¢’ and ’% + f—“ > ¢ imply that

&ol
0
‘k(,;ﬁ(x;t) —&-5’ > c(k:2 + |§|2)

V2 (5.52)

e given § > 0 there exists r > 0 such that Im(s(2;t)) > 7 > 0 on the support of ¢ whenever
|z — x| > 0.

This means, by the same reasoning as our original proof, that for any ¢t € (to — €,tg + €)

/Q(of)f)(t,x) dz

for uniform constants C. Thus, for any p € C§°(|t — to| < €)

< CNk_N

/ pof| < suplpl / wf(t, x)dedt
[0,T1xQ [0,7] supp(p) X2
< sup |p| / (/ wf(t,x)das) dt
[0,7] supp(p) \J/Q

< sup|p| x 2e x Cnk™

[0,7]
< COnkN
for some, alternative, constants {Cy : N € N}. O
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