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1 Introduction
The entire essay stems from a question which was on a maths challenge pack.

Find two whole numbers that multiply together to give one million, with
added requirement that neither may contain the digit zero.

The answer is 26 and 56, else one of the numbers would have a multiple of
10 in and thus a zero digit. Also trivially, negative answers would work too,
but we will only focus on the positive solutions. The answers agree: http:
//sparx.co.uk/deck/easy/1.asp This does however lead to the extension:

How many positive integer powers of 10 can be decomposed into two zeroless
factors as described above?

Definition 1.1. D-less A number N is D-less in base B, if it does not contain
D in it’s decimal expansion in base B. When base is not specified, I mean in
base 10.

This is a term I am coining, since I will be looking at various versions of D-
less and I have only managed to find work on Zeroless numbers (that too, only in
base 10.) e.g. 2, 22, 222, 2222, 22222. . . is a sequence of 3-less, 4-less. . . numbers
in base 10. At this point, you may be thinking, well this isn’t very difficult -
but there is much more than meets the eye.

2 Powers
Claim. There are infinite 0-less square numbers in base 10.

Closely consider these two propositions, and we should be able to prove this
claim. For n ∈ N. 1 Let xn = 3

∑n
i=1 10

i + 4 for this section. This means
xn = 33 . . . 3︸ ︷︷ ︸

n times

4

Proposition 2.1.

6× xn = 2× 10n+1 + 4 = 2 0 . . . 0︸ ︷︷ ︸
n times

4

1N = Naturals with 0. I will often be taking particular subsets of the naturals though.
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Proof. This is done by induction. For n = 0, x0 = 4. 4× 6 = 24 X.
Assume true for n = k − 1 ∈ N
Consider n = k.

xk = 3× 10k + xk−1

xk × 6 = 18× 10k + 2× 10k + 4 (By assumption)

= 20× 10k + 4

= 2× 10k+1 + 4

As true for n = 0 and true for k when true for k − 1, true ∀n ∈ N

Proposition 2.2.

x2
n =

2n+2∑
i=n+1

10i + 5

n∑
i=1

10i + 6 = 1 . . . 1︸ ︷︷ ︸
n+1

5 . . . 5︸ ︷︷ ︸
n times

6

Proof. This is done by induction. For n = 0, x0 = 4. 42 = 16 X.
Assume true for n = k − 1 ∈ N
Consider n = k.

x2
k = (3× 10k + xk−1)

2

= 9× 102k + 6× xk−1 × 10k + x2
k−1

= 9× 102k + 2× 102k + 4× 10k + x2
k−1 (by prop above)

= 11× 102k + 4× 10k +

2k∑
i=k

10i + 5

n∑
i=1

10i + 6 (by assumption)

=

2k+2∑
i=k+1

10i + 5

k+1∑
i=1

10i + 6

= 1 . . . 1︸ ︷︷ ︸
k+1

5 . . . 5︸ ︷︷ ︸
k times
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As true for n = 0 and true for k when true for k − 1, true ∀n ∈ N

With this the earlier claim is also proved.
There is also a formula for a cubic 0-less sequence, but I feel this is more

tedious than insightful. One of the things I wanted to investigate was if there
is also a formula for higher powers. As far as I know, they are unfound, if they
exist.

I wrote a script2 which will output the numbers which are d-less in base
10 when taken to the 4th power. Any sequence which does work should be a
subsequence to this. If this makes any progress, I will then modify it to 5th and
6th powers. . .

I suppose the next logical step is to start looking at different bases too.

Claim. There is only one 0-less square numbers in base 2.
2test01.py
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In base 2, numbers that are 0-less are of the form 1 . . . 1. Which are actually
numbers of the form 2n − 1 > 0. So the claim is equivalent to saying there is
only one numbers n s.t. 2n − 1 is a perfect square. We can quickly verify that
1 is both square and 0-less in base 2.

Proposition 2.3. A perfect square mod 100 will be in
S = {0, 1, 4, 9, 16, 21, 24, 25, 29, 36, 41, 44, 49, 56, 61, 64, 69, 76, 81, 84, 89, 96}
S = {1, 4, 9, 16}+ 20N ∪ {00, 25}

Proof. Square every number from 0 to 99 and take the last two digits. Observe
that this gives each element from S.

Proposition 2.4. @ ∈ N>1 s.t. 2n − 1 is a perfect square.

Proof. Take the powers of 2 higher that 21 modulo 100. They form into a cycle
of size 20.

C = {4, 8, 16, 32, 64, 28, 56, 12, 24, 48, 96, 92, 84, 68, 36, 72, 44, 88, 76, 52}
= 〈< 52 >〉
= {20n+ 4, 20n+ 8, 20n+ 12, 20n+ 16 : n = 0, 1, 2, 3, 4}
= {4, 8, 12, 16}+ 20N

Trivially, the set of 2n − 1 will be in the form A = {3, 7, 11, 15} + 20N we can
easily see that it would be impossible for 0 or 25 to be in this set, and then
can verify easily that the others are also not in the above set of perfect square
residues mod 100.

A second type proof:

Proof. Let n be even. 22m− 1 = q2 =⇒ Two square numbers are 1 apart. But
this is only true for 0 and 1. This would make q2 = 0. But q2 is the number we
are testing to be 0-less. So no solutions.
Let n be odd. 22m+1 − 1 = q2

q2 − 2(2m)2 = −1 But this is a negative pell’s equation. Solutions are obtained
by (x0, y0) = (1, 1) and (xn+1, yn+1) = (3xn + 4yn, 2xn + 3yn).
Bearing in mind we need yn = 2m, we can consider the parity of the solutions.
Other than the solution (1, 1) (i.e. 2m = 1 so m = 0, 22m+1 − 1 = 1 and every
other solution would be odd and so we have no more solutions.

Thus also proving the claim. Trivially still, 0 is the only 1-less number in
base 2. While we are searching other bases, it definitely does seem like hard
work if we go through each base like this. But aha! a short-cut:

Proposition 2.5. For base B ∈ N>2. There are infinite D-less power sequences
for all powers for all D ∈ N1<x<B

Proof. Consider the powers of B in base B. It will always be of the form 1 0 . . . 0︸ ︷︷ ︸
n times

by definition. Notice this will only ever use the 0 and 1 digits. So we can restrict
all our work to those two as all else are trivial.
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In light of the last prop, I rewrote the program3 earlier into two parts, each
to go from all bases between 3 and 10 inclusive, only testing for 0-less and 1-less
squares. The idea is that any sequence which does work, must be a subsequence
of the one the program prints out. Should I ever think of a formula, I just need
to look against this list.

Proposition 2.6. @n ∈ N>0 s.t. n2 is 1-less in base 3.

Proof. Consider x in base 3: x = k ∗ 3 + n. x2 = 3 ∗ 3k2 + n2. For x2 to be
1-less, n2 6≡ 1. But 22 = 4 ≡ 1, 12 = 1. So final digit is 0. But if n was 0 then
x can be divided by 3, and we get x̃ = x ÷ 3. Eventually x must have a non-0
digit, as x ∈ N>0. That digit will produce a 1.

Similarly,

Proposition 2.7. @n ∈ N>0 s.t. n2 is 1-less in base 4.

Proof. Consider x in base 4. x = k ∗ 4 + n. x2 = 4 ∗ (4k2) + n2. For x2 to be
1-less, n2 6≡ 1. But 12 = 4 ≡ 1, 32 = 9 ≡ 1.
So final digit is 0 or 2. If n was 2, then notice. x2 = 16k2 + 16k + 4. So there
is a ‘10’ at the end of it’s decimal expansion in base 4. As the rest is divisible
by 16 (so in the ‘hundreds’ and higher columns). So it is still not 1-less. But if
n was 0 then x can be divided by 4, and we get x̃ = x ÷ 4. Eventually x must
have a non-0 digit, as x ∈ N>0. That digit will produce a 1.

MUCH MORE TO COME WHEN I GET AROUND TO IT. I even have
the material, I just need to rigourise it and then ammend this. That said, I
have been told that some of the proofs given are some what fundamental and
not very pretty. If you find a better and not too lucrative proof, do email me.
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