
published in The Visual Computer. The final publication is available at link.springer.com
http://link.springer.com/article/10.1007/s00371-015-1161-4 first online: 24 October 2015

Repeatable Texture Sampling with Interchangeable Patches

Martin Kolář · Alan Chalmers · Kurt Debattista

Received: date / Accepted: date

Abstract Rendering textures in real-time environments

is a key task in computer graphics. This paper presents

a new parallel patch-based method which allows re-

peatable sampling without cache, and doesn’t create

visual repetitions. Interchangeable patches of arbitrary

shape are prepared in a preprocessing step, such that

patches may lie over the boundary of other patches in

a repeating tile. This compresses the example texture

into an infinite texture map with small memory require-

ments, suitable for GPU and ray tracing applications.

The quality of textures rendered with this method can

be tuned in the offline preprocessing step, and they can

then be rendered in times comparable to Wang tiles.

Experimental results demonstrate combined benefits in

speed, memory requirements, and quality of random-

ization when compared to previous methods.

Keywords Texture Synthesis · Texture Mapping ·
Parallel Rendering · Ray Tracing

1 Introduction

Texture synthesis is a core process in Computer Graph-

ics and design. It is used extensively in a wide range of

applications, including computer games, virtual envi-

ronments, manufacturing, and rendering. Crucial points

on which current methods compete are perceived tex-

ture quality, rendering speed, scale considerations, and

memory requirements.

In order to allow rendering with ray-tracing, and to

render textures in real time, current methods need to

University of Warwick
WMG
Tel.: +44-024-7652-2397
E-mail: {m.kolar,alan.chalmers,k.debattista}@warwick.ac.uk

Fig. 1: Output textures from our algorithm display

white-noise properties, without using cache (images are

linearly transformed without interpolation to vanish at

the horizon, results without offline manual tuning)

http://link.springer.com/article/10.1007/s00371-015-1161-4

2 Martin Kolář et al.

Methods allowing
repeatability

Methods which work
without cache

Methods with no visible repetition

[1] [4]

[14]

[17]

[21]

[12]

[10]

[22]

[15]

[11]

Our method

Fig. 2: Venn diagram of the trade-offs between current

example-based parallel texture synthesis algorithms

run in parallel and on a GPU, without hindering the

perceived quality.

As shown in Figure 2, our method addresses the

main requirements for example-based parallel texture

synthesis algorithms. This paper introduces a method

which allows parallel texture synthesis with patches of

arbitrary shape, without the necessity of a fixed repeat-

ing patch boundary. In previous work [17], selection

of interchangeable patches at runtime was also possi-

ble, but required a repeating fixed patch boundary. As

discussed later, the method presented here has similar

pre-processing complexity, memory consumption, and

rendering speed, but allows a wider class of interchange

types with higher variability, resulting in a higher qual-

ity texture.

Our method allows the sampling of any pixel in the

output texture with a deterministic algorithm, without

requiring any information from the pixels that have al-

ready been synthesised. Therefore, adjacent pixels can

be synthesised in parallel in separate threads, which do

not communicate.

Large textures are rendered by randomly selecting

subsets of prepared patches in a parallel and repeat-

able manner. These precomputed patches are stored ef-

ficiently, allowing seamless integration in GPU, and the

texture is rendered independently for each pixel on-the-

fly, allowing repeatable parallel access to an infinite,

non-periodic texture, appropriate for ray tracing appli-

cations.

The paper is structured as follows: Section 2 dis-

cusses previous work, and how our method improves on

the state-of-art in parallel texture synthesis. Section 3

outlines the high-level concept behind the method, and

section 4 goes through how these points are implemented.

Method outputs, their comparison to other work, and

other results are presented in section 5, and future work

and the conclusion are in section 6.

2 Previous Work

Sequential exemplar-based texture synthesis falls into

one of three classes [19]: pixel-based methods, patch-

based methods, and texture-optimisation methods. Par-

allel texture synthesis can be divided into an additional

three: dependency-tree methods, constant-time tiling

methods, and non-constant-time tiling methods.

Sequential pixel-based methods [3] consider each out-

put pixel in sequence, while sequential patch-based meth-

ods [2] replicate entire patches, optimising seams using

an algorithm such as Graph Cut [9]. Instead of perform-

ing the process once, patches can be placed iteratively

over the output until desired quality is achieved [8,21].

However, sequential algorithms are not suitable for si-

multaneous synthesis of disjoint regions, because the

space between them needs to be synthesised as well.

Where the entire texture cannot be held in memory,

but needs to be generated on-the-fly, parallel texture

synthesis methods can be used. The näıve approach to

reduce rendering time is to create a repeating tile from

an input exemplar, such that the edges fit [20]. This

causes visibly noticeable “tiling” effects. Tile-based run-

time synthesis relies on offline-preparation contents of

a texture map, which are then placed on a rendered

surface. Such placement schemes can be done in a num-

ber of different ways using a rectangular grid: Ammann

tiles [6], Wang tiles [1], stochastic tiles [18], s-tiles [22],

and colored corners [10]. Triangular [13] grids have also

been used. These approaches make the output pixel re-

trieval a constant-time operation for output textures

of arbitrary size. However, they create visible repeated

edges and grid patterns when zoomed out, as shown in

Figure 3.

In turn, this visible aberration is addressed by non-

rectangular region copying, such as megatexture [14],

virtual texturing [4,16], and patch-based methods [15].

However, these methods rely on cached information,

which can cause temporal artefacts when a scene is re-

rendered in a different order. To allow a different part

of the scene to be rendered elsewhere, in the next video

frame, or to be able to revisit a texture in a virtual

environment, it is desirable to guarantee that a tex-

ture rendered again from the same compact seed will

be identical to one rendered previously. This quality is

referred to as “repeatability”. (Not to be confused with

Repeatable Texture Sampling with Interchangeable Patches 3

Fig. 3: Comparison with Wang tiles using 2 different

borders (16 tiles) [1] (left), [17] (middle) and our results

(right). Sampled linearly. Top exemplar is 268x230, bot-

tom 512x512

“repetition”, which is generally undesirable in synthe-

sised textures)

Parallel non-constant-time patch replacement meth-

ods [5, 15, 17] perform a non-constant overhead opera-

tion while rendering, to address grid artefacts. These

methods place patches of precomputed shape on the

texture at run-time, according to a run-time compu-

tation, but require a fixed patch map whose bound-

aries cannot be overlaid with a patch. For example, in

the offline step of [17], a fixed repeating patch map

is created, along with various interchangeable patches

which fit the patch map boundaries (Figure 5). The

texture can then be sampled independently online with

a pseudo-random number generator at each repeating

patch map. However, none of these resolve the local ad-

jacency constraint for patches overlapping repeatable

tile boundaries.

Methods which use a statistical shape model for the

texture [5] are able to outperform rendering speeds and

quality of exemplar-based parallel synthesis, at the ex-

pense of relying on additional user input to model the

texture. As this is no longer automated example-based

texture synthesis, such methods are not included in Fig-

ure 2.

A visual comparison of methods which precompute

tiles and select placement during rendering is shown for:

Wang tiles (Figure 4), fixed map patches of [17] (Fig-

ure 5), and patches without map boundaries presented

here (Figure 6). In each figure, the precomputed set of

patches or shapes is on the left, with colors correspond-

ing to places of interchangeability.

This paper describes how interchangeable patches

can be applied online to repeating tiles without a fixed

patch map, and without posing constraints on bound-

aries and adjacencies. A discussion of the benefits of

this approach is in the results section.

Fig. 4: Precomputed Wang tiles a to f are represented

on the left, and a synthesised image is on the right

Fig. 5: Method of Vanhoey et al. [17]. Precomputed

fixed patch map and patches for content exchange on

the left, and a synthesised image on the right

Fig. 6: Our method. The precomputed tile and inter-

changeable patches are on the left, and a synthesised

image is on the right

While offering this enhancement over the state-of-

art, our method maintains the benefits of parallel non-

constant-time tiling: texture quality depends only on

the quality of a pre-processing step and available GPU

space. Memory and load on a GPU are addressed to

show that even complex textures can fit into limited

GPU memory, and the non-constant runtime overhead

is only a light logic operation.

3 Patch-based Texture Synthesis without

Spatial Dependency

The algorithm described in this paper is divided into

two steps: preprocessing and rendering, see Figure 8.

4 Martin Kolář et al.

(a) Texture with a non-
repeating patch map
(1024x682). See section 5
for a discussion of the properties
of such textures.

(b) Texture where
patch boundaries
are crossed by other
patches. (512x512)

Fig. 7: Irregular textures

Synthesise
Repeatable

Tile
(By [20])

Initial
Texture

Synthesise
Patches

onto
Repeatable

Tile

Repeatable Tile

Create
Biclique

Patches

Preprocessing

Coordinates

Lies on
the Tile
or on a
Patch?

Get Tile
Pixel

Get Patch
Pixel

On-The-Fly

tile

patch

Fig. 8: Flowchart overview of our method

The method starts with a simple repeatable tile

created from the exemplar texture. Next, interchange-

able patches of varying size are precomputed on the

repeatable tile. These can reach over the repeatable

tile boundary, so they are created such that they form

two sets, which mutually do not overlap. During ren-

dering, this non-overlapping criterion permits parallel

rendering, while guaranteeing local adjacency because

“active” patches cannot overlap.

The tile is made larger than the largest visual re-

peating element of the texture in the exemplar. For ex-

ample, in the left image of figure 1, this corresponds

to the number of pixels spanned by one apple. By us-

ing interchangeable patches of various sizes (from a few

pixels to a large portion of the tile), the synthesised

texture will contain elements on multiple scales.

The patches are saved, and at runtime are chosen in

each tile in a random, repeatable process, without any

cached information. A binary map of the patch allows

constant-time retrieval of pixel values.

Preprocessing guarantees that patches of adjacent

tiles do not overlap, and the online selection guaran-

tees that patches chosen within each specific tile are se-

lected so that they do not overlap. Because of these con-

straints, every sampled pixel is copied from one of two

regions: the repeatable tile, or a selected patch of this

tile or the neighbouring tile. At runtime, pixel lookup

is performed based on a simple logical operation which

makes this decision, and the selected pixel is retrieved

from the input texture.

4 Algorithm Implementation

The algorithm is composed of an offline preprocessing

step which creates the texture map representation, and

an online on-the-fly algorithm called for each requested

pixel coordinate (see Figure 8). The texture map con-

sists of a repeatable tile, and patches divided into two

sets with offset vectors on their specific tile (but not

locations in the final output texture). (See Figure 6)

4.1 Preprocessing

From an input texture, we create

– a repeatable tile

– difference vectors for each patch, denoting its loca-

tion in the base texture, and in the repeatable tile

– a 2D binary array containing the shape of each in-

terchangeable patch

– a binary matrix for each of two sets of patches with

the information whether any given pair overlaps

First, using Image Quilting [2], we synthesise the

“repeatable tile” from the exemplar (Figure 9).

(a) repeatable tile
(300x300px)

(b) a large patch
(91x112px)

(c) a small patch
(15x19px)

Fig. 9: Sample repeatable tile and patches for a given

texture

Repeatable Texture Sampling with Interchangeable Patches 5

The input texture is used as the patch source. If this

input texture does not fit into GPU memory, it may be

desirable to render a smaller base texture from which

patches will be copied, by [20]. Patches are not stored

explicitly, but are indexed from this base texture using

the difference vector. Therefore, each pixel of a patch

takes 1 bit of memory, instead of a minimum 3 bytes

for a näıve RGB pixel representation.

Next, we generate candidate patches by associating

random pixel locations between the repeatable tile and

the base texture, and by executing GridCut [7] to find

the optimal cut. Patches of various sizes are generated

by weighting the cuts by a Gaussian bell curve of vary-

ing width. The cut is allowed to overflow over borders

of the repeatable tile, but not the source tile.

As in previous work, the cut cost is Euclidian dis-

tance in CIELab colour space [23] of pixels in the orig-

inal texture (“base”), and the repeatable tile (“tile”).

For each potential patch, we find the maximum pixel

cut cost along the boundary, and choose a predefined

number of patches (P = 100 to 1000) with smallest

maximum cut cost. This removes poorly matched patches.

The following step, involving a rhombus and pseudo-

biclique, ensures that when patches are selected in ad-

jacent tiles, they will not interact by potentially over-

lapping.

The output space is divided into tiles A and B,

and there are two sets of precomputed interchangeable

patches, one for each. The same repeatable tile is used

for A and B, to make the texture map compact, but

the patch sets differ, to allow greater variability. These

patches can lie on the boundary between A and B, but

must be entirely within the rhombus around the region

they lie in (Figure 10). It is important that patches do

not overlap in the output texture, because the region

simultaneously covered by multiple patches is not guar-

anteed to fit. The patches which lie over the tile bound-

aries ensure that there is no straight repeating bound-

ary in the output texture, and the bounding rhombus

assures independence between patches “active” in ad-

jacent tiles.

The patches are divided into a pseudo-biclique such

that all patches in set A never overlap with any patch in

set B (Figure 11). Using the P patches of varying size

(Figure 9), a graph is constructed where each patch

is a node and each edge is a “does-not-overlap” rela-

tionship (Figure 11). This division is done heuristically,

using algorithm 1. Note: if edges are made to represent

an “overlaps” relationship instead, this pseudo-biclique

becomes the union of two disjoint graphs.

The selected patches are then saved in a binary ar-

ray, along with the following variables: width, height,

top left corner location in the base texture, and top left

Fig. 10: The output space alignment. The black rhom-

bus represents the boundary that patches in A cannot

overlap

A

B

Fig. 11: A pseudo-biclique. Every edge between patches

represents a “does not overlap” relationship, and edges

between patches in either group are allowed. On the

right, corresponding patch positions are shown.

corner location in the repeatable tile. Square subsets

of the matrix of overlaps are saved as well, one for the

overlaps among patches in A and a second for B.

4.2 On-the-fly Sampling

Given a single (x, y) coordinate, determine which tile

it lies in (tx, ty) by rounding to the nearest tile, and

its location in the tile (px, py) by modulo. It is then

determined whether the desired pixel is on an A tile or

a B tile, by whether tx + ty is odd or even.

For each tile type, there is a set of precomputed

patches PA and PB . For each patch ρ in each set, there

is a pseudo-random function r(a, b) which lies in the

binary domain. For example, our implementation uses

the following function:

rρ(a, b) = mod((αρ+a+cos(b))2+(βρ+b+sin(a))2, 1) < η

(1)

where αρ and βρ are initialization parameters of the

function, specific for each patch ρ. This binary Per-

6 Martin Kolář et al.

input : square binary matrix M, where true at (a, b)
represents that patches a and b do not overlap

output: subset of patches, divided into a
pseudo-biclique

lists A and B are initialized with the row and column
indexes of a random true point in M
while sum of lengths of A and B < P do

a := index of randomly selected row of M, such
that all intersections with elements in B are true
if a is not empty then

add a to A
end
b := index of randomly selected column of M, such
that all intersections with elements in A are true
if b is not empty then

add b to B
end

end

Algorithm 1: pseudo-biclique graph division algo-

rithm

lin noise function was chosen because it can be exe-

cuted efficiently on a CPU and GPU, and it passes the

Diehard battery of randomness tests1. The parameter

η ∈ [0, 1] varies incidence (in our implementation, we

set η = 10/|patches|.

input : square binary matrix, where true at (a, b)
represents that patches a and b overlap

output: subset of patches, such that there is no
overlap

while the matrix contains at least one true do
find first row with most true values;
remove this row, and the same column;

end

Algorithm 2: Deterministic creation of non-

overlapping patch subset

rρ(tx, ty) is evaluated for each patch in the appro-

priate set. For “active” patches, those where rρ(tx, ty)

is true, the precomputed binary overlap matrix is used

to find overlaps between them. Algorithm 2, which is

deterministic, is then used to eliminate overlaps. This

creates a small non-constant overhead, which is at most

linear, but always terminates in very few iterations. Be-

cause patches have been divided during offline prepro-

cessing, this operation does not need to consider more

than a few potential overlaps, each requiring one clock

cycle.

This creates a subset of patches on this tile, called

the “active subset”. For each, the 2D precomputed bi-

nary map of the patch is used to find whether (tx, ty)

is inside. If the point (tx, ty) is inside the patch, the

associated pixel is retrieved from the synthesised base

texture. This operation is a trivial array lookup in the

1 http://stat.fsu.edu/~geo/diehard.html

appropriate saved patch, since patches are not saved as

polygons.

If the point is not inside the patch, the nearest edge

is found, and the procedure repeated for the adjacent

tile. Note that, thanks to the rhombus-shaped bound-

ary for patches overlaying the boundary between A

and B, a pixel can only be affected by interchangeable

patches from the adjacent tile which is nearest (Fig-

ure 10). If the point is found to be in one of the non-

overlapping patches in the adjacent tile, the associated

pixel is retrieved from the synthesised base texture.

If the point does not lie in a patch chosen in this

tile, and does not lie in a patch chosen in the adjacent

tile, we retrieve the pixel from the tile itself.

4.3 Complexity, Memory, and Quality

The computational complexity of the live sampling is

near-constant, thanks to the structure in which pre-

computed information is stored. The process for each

pixel is to find which patches are active, then to find

the active subset, and retrieve the pixel. Deciding which

patches are active is a constant time operation, choos-

ing the active patch subset is at most quadratic in the

number of patches, and retrieving the relevant pixel is

also constant. As with other tiling methods, memory

consumption is completely independent on the number

of sampled pixels and the size of the output texture.

Memory consumption is determined by parameters

of the preprocessing step, allowing fine tuning to best

balance the tradeoff between quality and use of avail-

able memory. This was determined to be in the range

of tens of kilobytes (for simple textures such as Fig-

ure 12a), to 1MB (for complex textures such as Fig-

ure 12b). If the first texture uses 600 patches of 5x5

to 86x86 (2400 bytes for difference vectors and 47kB

of binary maps) pixels from a texture map of 96x96

(27kB), and a repeatable tile of 96x96 (27kB), the tex-

ture map totals 103kB. Note that memory consumption

is a factor of four of the texture map, which has been

approximately true for all included textures. For larger

textures, the total memory footprint will always be de-

termined by these four factors, and each of them can

be tuned for the specific application.

The computational complexity of the preprocessing

step is comparable to sequential patch-based texture

synthesis methods, but the contribution of this work is

the texture map compression and on-the-fly synthesis.

In practice, the preprocessing can even be done semi-

automatically, allowing the user to manually choose

patches which are visually satisfactory. The quality of

the synthesised texture can be made arbitrarily tuned

http://stat.fsu.edu/~geo/diehard.html

Repeatable Texture Sampling with Interchangeable Patches 7

(a) 192x192px (b) 185x124px

Fig. 12: Input textures

at the scale of patches, and patches can be chosen to

have any size. Therefore, by definition, the runtime al-

gorithm of our method can theoretically synthesise a

texture of the same quality as any offline patch-based

algorithm, repeatably, in parallel, and as fast as other

tiling methods. This only depends on the quality of the

preprocessing selection. Note that our implementation

and results are of a fully automated algorithm, to allow

a fair comparison to results published elsewhere.

On the GPU, pixel values are stored in DRAM and

cached in texture memory, and all other variables can

be optimized to fit into limited L1 processor shared

memory. The SIMD model of the GPU allows each mul-

tiprocessor to evaluate equation 1 for multiple pixels,

and the quadratic selection operation can be performed

to the earliest stopping among pixels sharing a multi-

processor. The pixel coordinates in the repeating tile

and base texture are returned. Since both images can

fit into the texture cache, non-local pixel value retrieval

will happen quickly, without reading DRAM memory.

5 Results

Our method produces textures whose quality is not de-

pendent on the runtime computational complexity, but

on the quality of the preprocessing step. Therefore, at

equal memory footprint, our runtime performance is

comparable to simple tiling methods (repeating pre-

computed tiles, as in [6], [1], [18], and [22]), but

the texture quality is comparable with patch-based it-

erative approaches.

In our experiments, precomputing was set to chose

the 1000 best patch interchanges found over a 4 hour

period, comparing tens of millions patch interchanges

at different scales. For the textures used here, these

settings proved satisfactory. Out of these, 300 patches

were used in each tile type, and 400 patches were dis-

carded, as discussed in Section 4.1. These amounts have

been selected because of memory constraints, because a

long search improves the patch quality, and because this

many patches provide ample variation in the rendered

texture. The upper bound on possible distinct rendered

tiles is 300!2, but because there are up to 75% overlaps

within each group, this is reduced by a few orders of

magnitude.

The speed of the sampling process itself compares

favourably with current approaches, despite the over-

head to be calculated at every pixel. Speeds are re-

ported on a single core of a 3GHz Xeon with 667 MHz

DDR2 RAM. This overhead is tuned by changing η,

which was set to η = 0.1. Because the time required to

calculate a single pixel is constant, the algorithm scales

linearly in the number of sampled pixels, and is par-

allelizable in a straightforward manner with speedup

proportional to the number of cores.

Our method has multiple applications: ray tracing,

rendering from bundled texture maps, or creating non-

repeating patches, such as for ceramic tile-printing.

For irregular textures, synthesis requires handling

complex properties, such as layering and overlapping,

which are not handled automatically by optimal seam

selection algorithms. For these, our method allows man-

ual selection of an appropriate repeating tile and patches.

Multiple repeating tiles can be synthesised, and the best

one is chosen by an expert. Patches are prepared offline,

so they can be shown to an expert user, who determines

if they make a believable substitution, and selects the

best. Synthesis results in figure 13 show how human

intervention can improve synthesis quality, while main-

taining the storage and run-time speed advantages of

our method. Interestingly, by allowing patches to form

assume locally optimal shape at numerous scales, inter-

changed patches often contain visual or semantic fea-

tures of the example texture.

While [17] works well for regular and stochastic tex-

tures, repeating a fixed patch map across an image can-

not capture certain irregular textures. Certain irregu-

lar textures cannot be faithfully replicated by simply

repeating patches of a given shape, no matter what

the shape is (Figure 7). Our method does not restrict

patches to replace contents only within precomputed

boundaries, instead allowing the boundaries themselves

to be replaced by other patches, thanks to a patch bi-

clique division. Section 5 contains a deeper discussion

of the limitations for certain irregular textures.

The fishing net in figure 13a changes orientation,

so patches replacing strings won’t align with the wood

texture. However, If patch boundaries lie on strings, the

underlying wood texture will not align. In figure 13b,

if patches are chosen to contain parts of leaves rather

than leaves, faithful reproduction won’t be guaranteed.

Note that all other textures in this paper have been

created without manual intervention.

8 Martin Kolář et al.

(a) High-level properties of
textures can be handled by
selecting a repeating tile
and patches which satisfy
the properties.

(b) Overlapping can be in-
teractively modelled with
our technique by manu-
ally appropriately select-
ing patches during pre-
processing.

(c) exemplar size 64x64 (d) exemplar size 512x512

Fig. 13: Synthesis results for irregular textures

5.1 Independent Pixel sampling for Ray Tracing

In various applications, a crucial property of texture

synthesis algorithms is that the error produced when

sampling distant pixels will not be constructive, but

will have the same properties as randomly selecting pix-

els. This is referred to as the white noise property, and

is particularly desirable with ray tracing. See results

in figure 3. We benchmarked the algorithm’s speed by

randomly sampling pixels. Across the different textures

we have tested, the time required to sample one pixel

did not significantly vary, because the key parameters

(number of patches, tile size, patch size) were set simi-

larly for all textures. On the tested platform, the time

required to sample one pixel averages 60 microseconds,

with little variation. Out of this, 45 microseconds are

required for pseudo-random binary sampling. Testing

various random access scenarios for different textures

has no effect on the retrieval time.

Unlike [21], the algorithm does not place a spatial

dependency on sampled pixels, so their performance

cannot be compared in practice. Any algorithm which

places dependency on sampled pixels would rely on

cache, making it slower for larger output textures, so

that sampling the texture millions of pixels apart would

give our method an advantage with predictable results.

Therefore, such a test was not performed in practice.

5.2 Patch sampling

If pixels forming a rectangle are calculated indepen-

dently, the pseudo-random binary sampling and patch

selection is performed unnecessarily. As the largest part

of time is spend precomputing which patches are used

within a specific tile, performing sampling for adjacent

pixels is significantly sped up when the tile properties

are already known. Here, simply retrieving the infor-

mation which patch the pixel is in and returning the

appropriate pixel is even faster. This allows us to syn-

thesise a continuous texture of 512 × 512 pixels in the

order of tens of milliseconds, while our näıve pixel-based

approach takes over a second.

Such an implementation can be beneficial when en-

tire neighboughoods are required for further processing,

such as in filtering.

Figure 3 compares the quality of a texture synthe-

sised with Wang tiles [1], with our method. Note the di-

amond shaped artefacts, which our method inherently

avoids.

Figures 1, 14, and 15 show textures rendered from

the inputs in Figures 9a and 12. Figure 1 demonstrates

that our method doesn’t create constructive repetitions

at scales far larger than the input texture, but instead

displays properties of white noise necessary for certain

applications. Flaws in images generated by our method

are seams, visible when the texel is large, and discon-

tinuous objects (Figure 14). This problem is inherent

to patch-based methods, as can be seen in the results

of the baseline method (Figure 15). Both issues can be

mitigated by manual selection of the tile and patches

when precomputing.

If adjacent pixels are rendered näıvely, the speedup

is be linear. However, if congruous sections are retrieved

simultaneously in each thread, the algorithm can be

sped up further, because the decision process selecting

patches need only be executed once.

6 Conclusion and Future work

We have presented a method with the benefits of cur-

rent parallel texture synthesis algorithms, allowing tex-

ture synthesis in real-time environments from a minimal

texture map. By sampling every pixel independently,

parallel processing can be exploited for a synthesised

texture of arbitrary size, while avoiding repetition along

lines or rectangles to avoid visible seams. Our method

makes it possible to perform exemplar-based texture

Repeatable Texture Sampling with Interchangeable Patches 9

Fig. 14: Output textures from our algorithm (450x800px)

Fig. 15: Output textures using Image Quilting [2] (450x800px)

10 Martin Kolář et al.

synthesis of arbitrary size in times comparable with

much simpler image retrieval operations. Our results

are of the same quality as sequential patch-based syn-

thesis, while significantly reducing retrieval time.

The benefits of this method over previous parallel

patch-replacement [17] is two-fold: preomputed patches

are not limited to lie on a precomputed fixed patch

map, and rendered patches can lie over the boundaries

of other precomputed patches. This makes the method

suitable even to complex irregular textures.

A major drawback of the method is the unavoided

repetition of corners of the repeatable tile. Careful se-

lection of patches would allow these corners to be over-

lapped by patches as well, and future work could in-

vestigate this. Thanks to the read-only access of pre-

computed texture information, our method will make

it possible to efficiently utilise GPU hardware to im-

prove rendering times, which is also future work.

In future work, high-level ideas from this work will

make it possible to create replaceable patches which

do not follow any repeating grid. Patch sets are not

inherently limited to two groups. The non-overlapping

biclique introduced here is not limited to patches which

follow the checkerboard pattern of precomputed inter-

change locations 10, but can follow a random Wang tile

pattern. This will further combine benefits of the two

techniques.

It is clear that with a single underlying tile, repe-

titions in areas not covered by patches will be visible.

Future work could combine our technique with Wang

tiles to deal with both this issue, and the issue of re-

peating edges in Wang tiles.

Thanks to the inherent parallelism, many further

applications can be explored. This method will great

benefit for texture compression, bundling of prepro-

cessed textures with graphical design packages, virtual

environment platforms, video games, rendering engines,

and mobile applications.

References

1. Cohen, M.F., Shade, J., Hiller, S., Deussen, O.: Wang
Tiles for image and texture generation. ACM Transac-
tions on Graphics 22(3), 287 (2003)

2. Efros, A.A., Freeman, W.T.: Image quilting for texture
synthesis and transfer. In: Proceedings of the 28th an-
nual conference on Computer graphics and interactive
techniques, pp. 341–346. ACM (2001)

3. Efros, A.A., Leung, T.K.: Texture synthesis by non-
parametric sampling. In: Computer Vision, 1999. The
Proceedings of the Seventh IEEE International Confer-
ence on, vol. 2, pp. 1033–1038. IEEE (1999)

4. Ephanov, A., Coleman, C.: Virtual texture: A large
area raster resource for the gpu. In: The Interser-
vice/Industry Training, Simulation & Education Confer-
ence (I/ITSEC), vol. 2006. NTSA (2006)

5. Gilet, G., Dischler, J.M., Ghazanfarpour, D.: Multi-scale
assemblage for procedural texturing. Computer Graphics
Forum 31(7 PART1), 2117–2126 (2012). DOI 10.1111/j.
1467-8659.2012.03204.x

6. Grunbaum, B., Shephard, G.C.: Tilings and patterns
(book). W.H. Freeman & Company (1986)

7. Jamriska, O., Sykora, D., Hornung, A.: Cache-efficient
graph cuts on structured grids. In: Computer Vision and
Pattern Recognition (CVPR), 2012, pp. 3673–3680. IEEE
(2012)

8. Kwatra, V., Essa, I., Bobick, A., Kwatra, N.: Texture op-
timization for example-based synthesis. In: ACM Trans-
actions on Graphics (TOG), vol. 24, pp. 795–802. ACM
(2005)

9. Kwatra, V., Schödl, A., Essa, I., Turk, G., Bobick,
A.: Graphcut textures: image and video synthesis using
graph cuts. In: ACM Transactions on Graphics (TOG),
vol. 22, pp. 277–286. ACM (2003)

10. Lagae, A., Dutré, P.: An alternative for wang tiles: col-
ored edges versus colored corners. ACM Transactions on
Graphics (TOG) 25(4), 1442–1459 (2006)

11. Lasram, A., Lefebvre, S.: Parallel patchbased texture syn-
thesis. High Performance Graphics (2012)

12. Lefebvre, S., Hoppe, H.: Parallel controllable texture
synthesis. In: ACM Transactions on Graphics (TOG),
vol. 24, pp. 777–786. ACM (2005)

13. Neyret, F., Cani, M.P.: Pattern-based texturing revisited.
In: Proceedings of the 26th annual conference on Com-
puter graphics and interactive techniques, pp. 235–242.
ACM Press/Addison-Wesley Publishing Co. (1999)

14. Obert, J., van Waveren, J., Sellers, G.: Virtual texturing
in software and hardware. In: ACM SIGGRAPH 2012
Posters, p. 5. ACM (2012)

15. Praun, E., Finkelstein, A., Hoppe, H.: Lapped textures.
Proceedings of the 27th annual conference on Computer
graphics and interactive techniques SIGGRAPH 00 (1),
465–470 (2000)

16. Taibo, J., Seoane, A., Hernández, L.: Dynamic virtual
textures. Journal of WSCG 17(1-3), 25–32 (2009)

17. Vanhoey, K., Sauvage, B., Larue, F., Dischler, J.M.: On-
the-fly multi-scale infinite texturing from example. ACM
Transactions on Graphics (TOG) 32(6), 208 (2013)

18. Wei, L.Y.: Tile-based texture mapping on graph-
ics hardware. In: Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics
hardware, pp. 55–63. ACM (2004)

19. Wei, L.Y., Lefebvre, S., Kwatra, V., Turk, G., et al.: State
of the art in example-based texture synthesis. In: Euro-
graphics 2009, State of the Art Report, EG-STAR, pp.
93–117 (2009)

20. Wei, L.Y., Levoy, M.: Fast texture synthesis using tree-
structured vector quantization. In: Proceedings of the
27th annual conference on Computer graphics and inter-
active techniques, pp. 479–488 (2000)

21. Wei, L.Y., Levoy, M.: Order-independent texture synthe-
sis. Tech. rep., TR 2002 (2002)

22. Xue, F., Zhang, Y.S., Jiang, J.L., Hu, M., Wu, X.D.,
Wang, R.G.: Real-time texture synthesis using s-tile set.
Journal of Computer Science and Technology 22(4), 590–
596 (2007)

23. Zhang, X., Wandell, B.A., et al.: A spatial extension of
cielab for digital color image reproduction. In: SID inter-
national symposium digest of technical papers, vol. 27,
pp. 731–734 (1996)

	Introduction
	Previous Work
	Patch-based Texture Synthesis without Spatial Dependency
	Algorithm Implementation
	Results
	Conclusion and Future work

