Seismology of rapidly, differentially rotating stars with gravity waves

Vincent Prat

in collaboration with

Stéphane Mathis, Kyle Augustson, Lucie Alvan, Allan Sacha Brun (CEA Saclay) François Lignières, Jérôme Ballot (IRAP, Toulouse)

Vincent Prat (CEA-Saclay)

Importance of gravity waves

- seismic diagnoses (intermediate-mass/massive stars)
- transport of angular momentum
 - low-mass stars (Talon & Charbonnel, 2005; Alvan et al., 2014, 2015) Van Reeth et al. (2016)
 - massive stars (Lee et al., 2014; Fuller et al., 2015; Rogers, 2015)

Alvan et al. (2015)

Rogers (2015)

• tidal dissipation in close-in planetary/stellar systems (Zahn, 1975; Ogilvie & Lin, 2004, 2007)

State of the art

Vast majority of studies in solid-body rotation

Studies with differential rotation

• in the traditional approximation (Mathis, 2009)

• shellular rotation (Mirouh et al., 2016)

• inertial waves (Baruteau & Rieutord, 2013; Guenel et al., 2016)

• acoustic waves in deformed stars (Reese et al., 2009)

1 m1 = 2.67 c=-4.42x10

The case of uniform rotation

Powerful asymptotic theory: ray dynamics

- acoustic waves (Lignières & Georgeot, 2008, 2009; Pasek et al., 2011, 2012)
- gravity waves (Prat et al., 2016)

3 types of modes

- regular modes
 → regular period spacings (Prat et al., 2017)
- island modes
 - \rightarrow specific spectral patterns
- chaotic modes
 - \rightarrow statistical spectral properties

Vincent Prat (CEA-Saclay)

General dispersion relation with differential rotation

$$\omega^{2} = \frac{f(f+Q_{s})k_{z}^{2} + N^{2}k_{\perp}^{2} - fQ_{z}(k_{s}k_{z} + k_{\parallel}k_{\perp}) + f\cos\Theta(f\cos\Theta + Q_{\perp})k_{c}^{2}}{k^{2} + k_{c}^{2}}$$

Features

- full Coriolis acceleration ($f = 2\Omega$)
- general 2D differential rotation ($\vec{Q} = r \sin \theta \vec{\nabla} \Omega$)
- centrifugal deformation
- back-refraction of waves near the surface (k_c)
- baroclinic effects: coupling structure/rotation

We focus on axisymmetric waves as a first step + fully radiative models

Vincent Prat (CEA-Saclay)

Radial differential rotation: fast core

- sub-inertial
 - regular modes
- trans-inertial (new)
 - chaotic modes
 - island modes
- super-inertial
 - regular modes
 - island modes

Radial differential rotation: slow core

Same conclusion as for the fast core

Vincent Prat (CEA-Saclav)

 $\Omega/\Omega_{\rm R},$

Latitudinal differential rotation

Regimes close to purely sub- or super-inertial

Vincent Prat (CEA-Saclay)

Latitudinal differential rotation (cont'd)

- similar dynamics:
 - regular modes
 - chaotic modes
- but different propagation domains

Important consequences for stellar physics

Variety of propagation domains

- ullet waves probe various cavities \rightarrow potentially a lot of information to extract
- important for the interaction of waves with excitation/damping regions
 - amplitude of modes (Townsend, 2000; Mathis et al., 2014)
 - transport of angular momentum (Pantillon et al., 2007; Mathis et al., 2008)
 - tidal dissipation (Ogilvie & Lin, 2004, 2007)

Seismic diagnoses (cf. Prat et al. 2017 for uniform rotation)

- low-frequency dynamics dominated by regular modes
- possibility to derive new seismic diagnoses for differential rotation

Next steps: transport of angular momentum, magnetic field

Thank you for your attention.

Vincent Prat (CEA-Saclay)

References

Alvan, L., Brun, A. S., & Mathis, S. 2014, A&A, 565, A42

- Alvan, L., Strugarek, A., Brun, A. S., Mathis, S., & Garcia, R. A. 2015, A&A, 581, A112
- Baruteau, C. & Rieutord, M. 2013, Journal of Fluid Mechanics, 719, 47
- Fuller, J., Cantiello, M., Lecoanet, D., & Quataert, E. 2015, ApJ, 810, 101
- Guenel, M., Baruteau, C., Mathis, S., & Rieutord, M. 2016, A&A, 589, A22
- Lee, U., Neiner, C., & Mathis, S. 2014, MNRAS, 443, 1515
- Lignières, F. & Georgeot, B. 2008, Phys. Rev. E, 78, 016215
- Lignières, F. & Georgeot, B. 2009, A&A, 500, 1173
- Mathis, S. 2009, A&A, 506, 811
- Mathis, S., Belkacem, K., & Goupil, M. J. 2008, Communications in Asteroseismology, 157, 144
- Mathis, S., Neiner, C., & Tran Minh, N. 2014, A&A, 565, A47
- Mirouh, G. M., Baruteau, C., Rieutord, M., & Ballot, J. 2016, J. Fluid Mech., 800, 213
- Ogilvie, G. I. & Lin, D. N. C. 2004, ApJ, 610, 477
- Ogilvie, G. I. & Lin, D. N. C. 2007, ApJ, 661, 1180
- Pantillon, F. P., Talon, S., & Charbonnel, C. 2007, A&A, 474, 155
- Pasek, M., Georgeot, B., Lignières, F., & Reese, D. R. 2011, Phys. Rev. Lett., 107, 121101
- Pasek, M., Lignières, F., Georgeot, B., & Reese, D. R. 2012, A&A, 546, A11
- Prat, V., Lignières, F., & Ballot, J. 2016, A&A, 587, A110
- Prat, V., Mathis, S., Lignières, F., Ballot, J., & Culpin, P.-M. 2017, A&A, 598, A105
- Reese, D. R., MacGregor, K. B., Jackson, S. Skumanich, A., & Metcalfe, T. S. 2009, 12 / 11