Seismology of rapidly, differentially rotating stars with gravity waves

Vincent Prat

in collaboration with

Stéphane Mathis, Kyle Augustson, Lucie Alvan, Allan Sacha Brun (CEA Saclay)
François Lignières, Jérôme Ballot (IRAP, Toulouse)
Importance of gravity waves

- seismic diagnoses (intermediate-mass/massive stars)
- transport of angular momentum
 - low-mass stars (Talon & Charbonnel, 2005; Alvan et al., 2014, 2015)
 - massive stars (Lee et al., 2014; Fuller et al., 2015; Rogers, 2015)
- tidal dissipation in close-in planetary/stellar systems
 (Zahn, 1975; Ogilvie & Lin, 2004, 2007)

State of the art

Vast majority of studies in solid-body rotation

Studies with differential rotation

- in the traditional approximation (Mathis, 2009)
- shellular rotation (Mirouh et al., 2016)
- inertial waves (Baruteau & Rieutord, 2013; Guenel et al., 2016)
- acoustic waves in deformed stars (Reese et al., 2009)
The case of uniform rotation

Powerful asymptotic theory: ray dynamics

- **acoustic waves** (Lignières & Georgeot, 2008, 2009; Pasek et al., 2011, 2012)
- **gravity waves** (Prat et al., 2016)

3 types of modes

- **regular modes**
 → regular period spacings (Prat et al., 2017)
- **island modes**
 → specific spectral patterns
- **chaotic modes**
 → statistical spectral properties
General dispersion relation with differential rotation

\[\omega^2 = f(f + Q_s)k_z^2 + N^2 k_{\perp}^2 - fQ_z(k_s k_z + k_{||} k_{\perp}) + f \cos \Theta (f \cos \Theta + Q_{\perp}) k_c^2 \]

Features

- full Coriolis acceleration \((f = 2\Omega)\)
- general 2D differential rotation \((\vec{Q} = r \sin \theta \vec{\nabla} \Omega)\)
- centrifugal deformation
- back-refraction of waves near the surface \((k_c)\)
- baroclinic effects: coupling structure/rotation

We focus on axisymmetric waves as a first step
+ fully radiative models
Radial differential rotation: fast core

Rotation profile

- sub-inertial
 - regular modes
- trans-inertial (new)
 - chaotic modes
 - island modes
- super-inertial
 - regular modes
 - island modes
Radial differential rotation: slow core

Rotation profile

- sub-inertial
 - regular modes
- trans-inertial (new)
 - chaotic modes
 - island modes
- super-inertial
 - regular modes
 - island modes

Same conclusion as for the fast core
Latitudinal differential rotation

Ex. of rotation profile

Various regimes

Regimes close to purely sub- or super-inertial
Latitudinal differential rotation (cont’d)

- similar dynamics:
 - regular modes
 - chaotic modes
- but different propagation domains
Important consequences for stellar physics

Variety of propagation domains
- Waves probe various cavities → potentially a lot of information to extract
- Important for the interaction of waves with excitation/damping regions
 - Amplitude of modes (Townsend, 2000; Mathis et al., 2014)
 - Transport of angular momentum (Pantillon et al., 2007; Mathis et al., 2008)
 - Tidal dissipation (Ogilvie & Lin, 2004, 2007)

Seismic diagnoses (cf. Prat et al. 2017 for uniform rotation)
- Low-frequency dynamics dominated by regular modes
- Possibility to derive new seismic diagnoses for differential rotation

Next steps: transport of angular momentum, magnetic field
Thank you for your attention.
References

Mathis, S., Belkacem, K., & Goupil, M. J. 2008, Communications in Asteroseismology, 157, 144
Mirouh, G. M., Baruteau, C., Rieutord, M., & Ballot, J. 2016, J. Fluid Mech., 800, 213