Comparative planetary interiors and the effects on habitability

D. Breuer (DLR, Institute of Planetary Research)

in collaboration with

PLATO Mission Conference 2017
Outline

• How does the planetary interior influence the habitability?
 • General concept
 • Difference between plate tectonic and stagnant lid planets

• Would an Earth-like planet be habitable without plate tectonics?
 • Coupling the interior with atmosphere models
Habitability and Habitable zone

Potential of an environment to support life (presence of liquid water at the surface)

- Distance to the star
- Presence and composition of atmosphere
Planetary Interior Dynamics

- Volcanic and tectonic history
- Magnetic field
- Atmosphere evolution
What influences the thermal, magnetic and atmosphere evolution?

• Tectonic mode
 (plate tectonics – stagnant lid convection)

• Mass, Size, Interior structure and composition
One-Plate-Planet

Atmosphere

Biosphere

Hydrosphere

Crust

Volcanism

Mantle

Degassing

Erosion by solar wind; Impacts

Space

?
Plate Tectonic Planet

Atmosphere

Biosphere

Hydrosphere

Crust

Volcanism

Mantle

Degassing

Erosion by solar wind; Impacts

Space

Eroision by solar wind; Impacts
Subduction, regassing, and enhanced cooling

Shelining by solar wind; Impacts

Erosion by solar wind; Impacts

Convective Cooling

Dynamo Action
Plate tectonics and habitability

Plate tectonics recycles near-surface rocks and volatiles with the planet’s interior through subduction. This helps

• to create **geologic diversity**, e.g., granitic cratons that will form continents and continental shelves and mid oceanic ridges with their black smokers
• to replenish depleted surface rock as the base for the **nutrition chain**
• to stabilize the **atmosphere temperature** and create clement conditions through the carbonate-silicate cycle
• to cool the deep interior and to generate a **magnetic field** in the core
• The strong dependence of rock viscosity on temperature naturally leads to the formation of a stagnant lid
• The ultimate reasons why plate tectonics occurs only on Earth are unknown, let alone on extrasolar bodies, whether of larger or similar size
The big debate: Plate tectonics on exoplatents

• Increase in mass results in stronger lithospheric stresses \Rightarrow PT more likely
 ‣ Valencia et al. (2007)
 ‣ Valencia and O’Connell (2009)
 ‣ Van Heck and Tackley (2011)
 ‣ Foley et al. (2012)

• Increase in mass results in stronger increase of yield stress \Rightarrow Pt less likely
 ‣ O’Neill and Lenardic (2007)
 ‣ O’Neill et al. (2007)
 ‣ Stein et al. (2004)

• Increase in internal heating rate \Rightarrow Pt equally or less likely
 ‣ Van Heck and Tackley (2011)
 ‣ Stein et al. (2013)
 ‣ Foley et al. (2012)
 ‣ Stamenkovic and Breuer (2014)
The big debate: Plate tectonics on exoplanets

- History dependent (e.g. initial conditions)
 - Lenardic and Crowley (2012)
 - Weller and Lenardic (2012)
 - Noack and Breuer (2013)
 - Stamenkovic et al. (2014)
 - Weller et al. (2015)
 - Wong and Solomatov (2016)
 - O’Neill et al. (2016)
The strong dependence of rock viscosity on temperature naturally leads to the formation of a stagnant lid.

The ultimate reasons why plate tectonics occurs only on Earth are unknown, let alone on extrasolar bodies, whether of larger or similar size.

Would an Earth-like planet without plate tectonics be habitable, i.e. have liquid water at the surface?
Interior + atmosphere modelling

- **Interior evolution** of an Earth-like, stagnant lid planet
- **Outgassing** of H_2O (via fractional melting) and CO_2 (via redox melting)
- **Atmospheric temperature** and boundaries of the habitable zone determined exclusively from H_2O and CO_2 outgassed from the interior

Tosi et al., 2016
Atmospheric model

• Model features:
 ‣ cloud-free
 ‣ steady-state temperature and pressure calculation
 ‣ H₂O profile derived from temperature and relative humidity profiles
 ‣ energy transport via moist convection and radiative transfer
 ‣ linear increase of Sun’s luminosity with time (Gough, 1981)
 ‣ no primordial H-He atmosphere, no atmosphere from magma ocean, only H₂O and CO₂ degassing from the interior
Outgassing of H$_2$O and CO$_2$ into the atmosphere ultimately depends on their solubilities in surface (basaltic) melts.

H$_2$O solubility is more than a factor 100 larger than CO$_2$ solubility \(\Rightarrow \) as the atmospheric pressure grows, H$_2$O tends to be retained in the melt, while CO$_2$ outgassed.
Thermal and crustal evolution

- Initial heating phase between 500 and 1500 Myr followed by secular cooling
- Rapid crust production followed by delamination with the crust quickly becoming as thick as the stagnant lid

Tosi et al., A&A (2017)
Crustal Recycling by Delamination
Outgassing evolution of H$_2$O and CO$_2$

- Outgassing of H$_2$O limited by its high solubility in basalt
- ~20 bar H$_2$O outgassed from the interior for H$_2$O concentrations up to 1000 ppm
- Low solubility of CO$_2$ allows all CO$_2$ in the melt to be outgassed throughout the evolution
- ~2 bar CO$_2$ outgassed from the interior for fO$_2$ at IW, ~20 bar for fO$_2$ at IW+1, ...

Tosi et al., A&A (2017)
Atmospheric evolution at 1 AU

Reference model: $T_m^0 = 1700 \text{ K}$, $X_{H_2O}^0 = 500 \text{ ppm}$, $\Delta J/W = 0$

- Surface temperature rises due to linear brightening of the Sun and increase in greenhouse gases from the interior
- Water vapour in the atmosphere increases with surface temperature
- A liquid water reservoir of $\sim 2\%$ of an Earth ocean can build up

Tosi et al., 2017
Habitable zone evolution

Reference model: $T_m^0 = 1700$ K, $X_{H_2O}^0 = 500$ ppm, $\Delta/I = 0$

- Inner HZ controlled mainly by increasing solar luminosity
- Outer HZ controlled by outgassed CO$_2$ and increasing solar luminosity
- A stagnant lid Earth could be habitable today at Mars’ orbit, but not at Venus’ orbit
Present-day habitable zone
Habitable zone varies with time and depends on

- Initial volatile content (oxygen fugacity)
- Tectonic style
- Mass and size of the planet
- Interior structure
- Atmosphere loss processes
 - Solar activity
 - Weathering rates
Conclusion

- The Earth has a fine-tuned balance between volatiles in the interior, the atmosphere and hydrosphere.
- But a stagnant lid Earth can be also habitable although surface conditions are less stable.
- We need to consider also weathering and atmosphere loss processes as well as different planetary masses and sizes.