

Comparative planetary interiors and the effects on habitability

D. Breuer (DLR, Institute of Planetary Research)

in collaboration with

N. Tosi, M. Godolt, B. Stracke, T. Ruedas, J.L. Grenfell, D. Höning,

PLATO Mission Conference 2017

Outline

- How does the planetary interior infuence the habiltabilty?
 - General concept
 - Difference between plate tectonic and stagnant lid planets

- Would an Earth-like planet be habitable without plate tectonics?
 - Coupling the interior with atmosphere models

Habitability and Habitable zone

Potential of an enviroment to support life (presence of liquid water at the surface)

- Distance to the star
- Presence and composition of atmosphere

Planetary Interior Dynamics

- Volcanic and tectonic history
- Magnetic field
- Atmosphere evolution

What influences the thermal, magnetic and atmosphere evolution?

Tectonic mode

(plate tectonics – stagnant lid convection)

• Mass, Size, Interior structure and composition

Plate tectonics and habitability

Plate tectonics recycles near-surface rocks and volatiles with the planet's interior through subduction. This helps

- to create geologic diversity, e.g., granitic cratons that will form continents and continental shelfs and mid oceanic ridges with their black smokers
- to replenish depleted surface rock as the base for the **nutrition chain**
- to stabilize the atmosphere temperature and create clement conditions through the carbonate-silicate cycle
- to cool the deep interior and to generate a magnetic field in the core

- The strong dependence of rock viscosity on temperature naturally leads to the formation of a stagnant lid
- The ultimate reasons why plate tectonics occurs only on Earth are unknown, let alone on extrasolar bodies, whether of larger or similar size

The big debate: Plate tectonics on exoplatents

- Increase in mass results in stronger lithospheric stresses → PT more likely
 - Valencia et al. (2007)
 - Valencia and O'Connell (2009)
 - Van Heck and Tackley (2011)
 - Foley et al (2012)
- Increase in mass results in stronger increase of yield stress → Pt less likely
 - O'Neill and Lenardic (2007)
 - O'Neill et al. (2007)
 - Stein et al. (2004)
- Increase in internal heating rate → Pt equally or less likely
 - Van Heck and Tackley (2011)
 - Stein et al. (2013)
 - Foley et al (2012)
 - Stamenkovic and Breuer (2014)

The big debate: Plate tectonics on exoplatents

- History dependent (e.g. initial conditions)
 - Lenardic and Crowley (2012)
 - Weller and Lenardic (2012)
 - Noack and Breuer (2013)
 - Stamenkovic et al. (2014)
 - Weller et al. (2015)
 - Wong and Solomatov (2016)
 - O'Neill et al. (2016)

- The strong dependence of rock viscosity on temperature naturally leads to the formation of a stagnant lid
- The ultimate reasons why plate tectonics occurs only on Earth are unknown, let alone on extrasolar bodies, whether of larger or similar size
- Would an Earth-like planet without plate tectonics be habitable, i.e. have liquid water at the surface?

Interior + atmosphere modelling

radiative

convective

 ${\rm Atmosphere}\, \checkmark$

 Interior evolution of an Earth-like, stagnant lid planet

- •**Outgassing** of H₂O (via fractional melting) and CO₂ (via redox melting)
- Atmospheric temperature and boundaries of the habitable zone determined exclusively from H₂O and CO₂ outgassed from the interior

Crust Stagnant lid Convective mantle Convective core

Tosi et al., 2016

Atmospheric model

•1-D model of radiative-convective equilibrium based on Kasting et al., (1984; 1988), Segura et al. (2003), von Paris et al. (2008; 2010; 2015)

Model features:

- cloud-free
- steady-state temperature and pressure calculation
- H₂O profile derived from temperature and relative humidity profiles
- energy transport via moist convection and radiative transfer
- Inear increase of Sun's luminosity with time (Gough, 1981)
- no primordial H-He atmosphere, no atmosphere from magma ocean, only H₂O and CO₂ degassing from the interior

H₂O and CO₂ solubility in basaltic magmas

Newman & Lowenstern (2002)

- Outgassing of H₂O and CO₂ into the atmosphere ultimately depends on their solubilities in surface (basaltic) melts
- H₂O solubility is more than a factor 100 larger than CO₂ solubility ⇒ as the atmospheric pressure grows, H₂O tends to be retained in the melt, while CO₂ outgassed

Thermal and crustal evolution

- Initial heating phase between 500 and 1500 Myr followed by secular cooling
- Rapid crust production followed by delamination with the crust quickly becoming as thick as the stagnant lid

Crustal Recycling by Delamination

Outgassing evolution of H₂O and CO₂

- Outgassing of H₂O limited by its high solubility in basalt
- ~20 bar H_2O outgassed from the interior for H_2O concentrations up to 1000 ppm
- Low solubility of CO_2 allows all CO_2 in the melt to be outgassed throughout the evolution
- ~2 bar CO₂ outgassed from the interior for fO₂ at IW, ~20 bar for fO₂ at IW+1, ...

Atmospheric evolution at 1 AU

- Surface temperature rises due to linear brightening of the Sun and increase in greenhouse gases from the interior
- Water vapour in the atmosphere increases with surface temperature
- A liquid water reservoir of ~2% of an Earth ocean can build up

Tosi et al., 2017

Habitable zone evolution

- Inner HZ controlled mainly by increasing solar luminosity
- Outer HZ controlled by outgassed CO₂ and increasing solar luminosity
- A stagnant lid Earth could be habitable today at Mars' orbit, but not at Venus' orbit

Present-day habitable zone

Habitable zone varies with time and depends on

- Initial volatile content (oxygen fugacity)
- Tectonic style
- Mass and size of the planet
- Interior structure
- Atmosphere loss processes
 - Solar activity
 - Weathering rates

Conclusion

- The Earth has a fine-tuned balance between volatiles in the interior, the atmosphere and hydrosphere
- But a stagnant lid Earth can be also habitable although surface conditions are less stable
- We need to consider also weathering and atmopshere loss processes as well as different planetary masses and sizes

