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The Kepler Dichotomy: an excess of systems
with a single transiting candidate
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The Kepler Dichotomy: explanations
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The Kepler Dichotomy: explanations

__Unstable non-resonant systems (Pu
& Wu 2015, Volk & Gladman 2015)

R _Unstable resonant systems (Izidoro
Grinding et al. 2017)

down”

__Secular resonance sweeping
(Spalding & Batygin 2016)

—Destabilisation by outer systems
(Mustill et al 2017, Huang et al 2017)
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The Kepler Dichotomy: explanations

“Grinding
down”

“Building

up

__Unstable non-resonant systems (Pu
& Wu 2015, Volk & Gladman 2015)

__Unstable resonant systems (Izidoro
etal.2017)

__Secular resonance sweeping
(Spalding & Batygin 2016)

—Destabilisation by outer systems
(Mustill et al 2017, Huang et al 2017)

__In situ embryo accretion (Hansen &
Murray 2013, Moriarty & Ballard 2016)

__Other formation effects (number
of cores/seeds, &c.)
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The Kepler Dichotomy: explanations
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What are the encounter velocities in unstable
planetary systems?
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This 1s a minimum: will be higher including z-components
of velocity and gravitational focusing
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What are the encounter velocities in unstable
planetary systems?
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MERCURY N-body integrator
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* Low collision velocity: retain perfect merging.

- Large impact parameter, moderate velocity: hit-and-run impact.
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* Low collision velocity: retain perfect merging.

- Large impact parameter, moderate velocity: hit-and-run impact.
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- High velocity: disruptive or super-catastrophic impact. Scaling laws from
Leinhardt & Stewart (2012). Modifications to allow for disparate densities.
Treatment of collision fragments: two approximations:

- Instantaneous removal: mass lost in collision 1s removed from integration.
Represents mass lost as small grains, removed by radiation forces

* Full retention: mass is distributed into super-particles. Fragment velocity
distribution from Jackson & Wyatt (2012), scaled to planetary escape velocity.
Represents mass lost as larger chunks.



Improving the collision treatment in the
MERCURY N-body integrator

Improve the algorithm for detecting collisions: if close encounter detected,
iteratively halve timestep. Need accurate impact parameter and velocity to
know collision outcome.

Improve the algorithm for resolving collisions:

* Low collision velocity: retain perfect merging.

- Large impact parameter, moderate velocity: hit-and-run impact.
Geometrical approximation for mass “shaved off™.

- High velocity: disruptive or super-catastrophic impact. Scaling laws from
Leinhardt & Stewart (2012). Modifications to allow for disparate densities.

Treatment of collision fragments: two approximations:  Use this as most extreme case

* Full retention: mass is distributed into super-particles. Fragment velocity
distribution from Jackson & Wyatt (2012), scaled to planetary escape velocity.
Represents mass lost as larger chunks.
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Collision outcomes 1n unstable super-Earth systems

Collision outcomes as function of inner Collision outcomes as function of planetary
planet's semimajor axes mass range
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At 0.1 au most collisions are not perfect mergers.
But erosive collisions do not result in much mass loss

kernel density estimate

| I T T T T | T T T T T 1 ’O
B 5p ereae T i
............ 3p+J+B |
| - - -- 3p+3J B
o 7
10.00 F i 1o g
E Large number of collisions/Y | _ rl i
tesulting in little mass loss: these | s EN _
i are mostly hit-and-run M LG .
/RIAY ~0.6
1.00 . ‘ i
oA -2\ 7104
oioL S T _
0.2
O'O 1 -2 i : 1 1 1 1 1 | 1 1 1 0.0
-1.0 -0.5 0.0 0.5 1.0

largest body fractional AM,/M,

cumulative distribution

Alexander Mustill — PLATO Mission Conference 2017-09-07



Little impact on final multiplicity after instability

Hard to grind a system down to one or zero detectable planets
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ing from smaller planets
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Observed multiplicities: still not enough singles

Observed multiplicities: around 6 singles for every 1 double (depending slightly
on selection criteria), e.g. Johansen et al (2012), Lissauer et al (2014)

Our unstable multiples reduce to ~3:1 observed singles:doubles

Still need extra source of singles (see also 1zidoro er al 2017 for initially
resonant systems, perfect merging assumed)
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Effects on in-situ formation from embryos
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Conclusions

Collisions between planets or embryos at ~0.1 au usually do not result in perfect
mergers.

Fewer perfect mergers when planets are smaller, or high eccentricities are
excited by outer system dynamics.

Many collisions are grazing impacts resulting in little mass loss.

Little effect on final mass distribution or multiplicity when starting from large
planets.

In-situ formation from embryos is strongly affected by the collision prescription.
It collision debris 1s efficiently removed, many single- or zero-planet systems
form. Contribution to the Kepler dichotomy for rocky planets.

See arxiv.org/abs/1708.08939 for further details.
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At small orbital distances, Keplerian velocity
can significantly exceed surface escape velocity
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At small orbital distances, Keplerian velocity
can significantly exceed surface escape velocity
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At small orbital distances, Keplerian velocity
can significantly exceed surface escape velocity
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At small orbital distances, Keplerian velocity
can significantly exceed surface escape velocity

Solar System planets at 0.1au
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Final mass distributions 1n unstable super-Earth
systems
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Abandoning the perfect merging algorithm
results in more widely-spaced systems

2—planet systems
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