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The Kepler Dichotomy: an excess of systems 
with a single transiting candidate

Reconstructed intrinsic multiplicities 
at different mutual inclinations

Contribution to single-, double- and 
triple-candidate systems

Johansen et al 2012; see also Fang & Margot 2012, Ballard & Johnson 2016
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“Grinding 
down”

Unstable non-resonant systems (Pu 
& Wu 2015, Volk & Gladman 2015)
Unstable resonant systems (Izidoro 
et al. 2017)
Secular resonance sweeping 
(Spalding & Batygin 2016)
Destabilisation by outer systems 
(Mustill et al 2017, Huang et al 2017)
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“Grinding 
down”
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& Wu 2015, Volk & Gladman 2015)
Unstable resonant systems (Izidoro 
et al. 2017)
Secular resonance sweeping 
(Spalding & Batygin 2016)
Destabilisation by outer systems 
(Mustill et al 2017, Huang et al 2017)

“Building 
up”

In situ embryo accretion (Hansen & 
Murray 2013, Moriarty & Ballard 2016)

Other formation effects (number 
of cores/seeds, &c.)

Collisions

Volk & Gladman 2015
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What are the encounter velocities in unstable 
planetary systems?

This is a minimum: will be higher including z-components 
of velocity and gravitational focusing
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What are the encounter velocities in unstable 
planetary systems?

vcoll/vesc sets how destructive the collision is
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Improving the collision treatment in the 
MERCURY N-body integrator

• Improve the algorithm for detecting collisions: if close encounter detected, 
iteratively halve timestep. Need accurate impact parameter and velocity to 
know collision outcome.

• Improve the algorithm for resolving collisions:
• Low collision velocity: retain perfect merging.
• Large impact parameter, moderate velocity: hit-and-run impact. 

Geometrical approximation for mass “shaved off”.
• High velocity: disruptive or super-catastrophic impact. Scaling laws from 

Leinhardt & Stewart (2012). Modifications to allow for disparate densities.

• Treatment of collision fragments: two approximations:
• Instantaneous removal: mass lost in collision is removed from integration. 

Represents mass lost as small grains, removed by radiation forces
• Full retention: mass is distributed into super-particles. Fragment velocity 

distribution from Jackson & Wyatt (2012), scaled to planetary escape velocity. 
Represents mass lost as larger chunks.

Use this as most extreme case
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At 0.1 au most collisions are not perfect mergers.
But erosive collisions do not result in much mass loss

Large number of collisions 
resulting in little mass loss: these 

are mostly hit-and-run
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Little impact on final multiplicity after instability
Hard to grind a system down to one or zero detectable planets
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Exception: when starting from smaller planets

Alexander Mustill — PLATO Mission Conference 2017-09-07



Observed multiplicities: still not enough singles
• Observed multiplicities: around 6 singles for every 1 double (depending slightly 

on selection criteria), e.g. Johansen et al (2012), Lissauer et al (2014)
• Our unstable multiples reduce to ~3:1 observed singles:doubles
• Still need extra source of singles (see also Izidoro et al 2017 for initially 

resonant systems, perfect merging assumed)
464

147
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Effects on in-situ formation from embryos

Always perfect 
merging: high-

multiplicity 
systems formed

Realistic collision 
algorithm: few 

high multiplicity, 
many singles and 

zeros

Caveat: 
fragments 

removed (no 
reaccretion)
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Conclusions
• Collisions between planets or embryos at ~0.1 au usually do not result in perfect 

mergers.

• Fewer perfect mergers when planets are smaller, or high eccentricities are 
excited by outer system dynamics.

• Many collisions are grazing impacts resulting in little mass loss.

• Little effect on final mass distribution or multiplicity when starting from large 
planets.

• In-situ formation from embryos is strongly affected by the collision prescription. 
If collision debris is efficiently removed, many single- or zero-planet systems 
form. Contribution to the Kepler dichotomy for rocky planets.

• See arxiv.org/abs/1708.08939 for further details.
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At small orbital distances, Keplerian velocity 
can significantly exceed surface escape velocity

Solar System planets

Solar System planets at 0.1au

Known exoplanets with mass 
and radius measurements



Final mass distributions in unstable super-Earth 
systems



Abandoning the perfect merging algorithm 
results in more widely-spaced systems

Empirical Kepler distribution 
(Weiss et al 2017)


