How PLATO's asteroseismic stellar age constraints could track planetary evolution

Dimitri Veras
University of Warwick
What can asteroseismology do for planets?

— Tides

— Planet destruction

— Formation

— Gravitational scattering
What can PLATO do for asteroseismology?

F5-K7 stars

Core sample of ~15,000 stars

Uses *Gaia* radii measurements

10% main sequence age precision
What can asteroseismology do for planets?

— Gravitational scattering

Prospects for detecting decreasing exoplanet frequency with main-sequence age using PLATO

Dimitri Veras, David J. A. Brown, Alexander J. Mustill and Don Pollacco

1 Department of Physics, University of Warwick, Coventry CV4 7AL, UK
2 Astrophysics Research Centre, School of Mathematics & Physics, Queen’s University Belfast, University Road, Belfast BT7 1NN, UK
3 Lund Observatory, Department of Astronomy and Theoretical Physics, Lund University, Box 43, SE-221 00 Lund, Sweden
2-planet unstable systems

Log_{10}[inner planet orbits]

Semimajor axis ratio

Hill Unstable
Lagrange Unstable
Stable

$e_1 = 0.3$
$e_2 = 0.0$
2-planet unstable systems

Minimum Instability Times

\[
\log_{10} \left[\text{inner planet orbits} \right] = 5.2 \left(\frac{\mu}{M_J/M_\odot} \right)^{-0.18}
\]

offset

best fit line

\(e_1=0.0, e_2=0.1\)
\(e_1=0.0, e_2=0.2\)
\(e_1=0.0, e_2=0.3\)
\(e_1=0.1, e_2=0.0\)
\(e_1=0.1, e_2=0.1\)
\(e_1=0.1, e_2=0.2\)
\(e_1=0.1, e_2=0.3\)
\(e_1=0.2, e_2=0.0\)
\(e_1=0.2, e_2=0.1\)
\(e_1=0.2, e_2=0.2\)
\(e_1=0.2, e_2=0.3\)
\(e_1=0.3, e_2=0.0\)
\(e_1=0.3, e_2=0.1\)
\(e_1=0.3, e_2=0.2\)
\(e_1=0.3, e_2=0.3\)

\(a_1=10 \text{ au}\)
\(a_1=1.0 \text{ au}\)
\(a_1=0.1 \text{ au}\)
PLATO asteroseismology with 2 planets
Excluding first time bin

$\alpha_1 = 0.1 \text{ au}$

$M_\star = 1.5 M_\odot$
$M_\star = 1.4 M_\odot$
$M_\star = 1.3 M_\odot$
$M_\star = 1.2 M_\odot$
$M_\star = 1.1 M_\odot$
$M_\star = 1.0 M_\odot$
$M_\star = 0.7 M_\odot$

PLATO asteroseismology with 2 planets
More than 2 planets

More than 2 planets

≥3 planets: Necessary empirical relation for detectable trend
More than 2 planets

Excluding first time bin
Conclusions

PLATO stellar age constraints can trace planetary system evolution

Predict decreasing frequency with time

Detectable for ice giants and gas giants
What about after main sequence?

9 March 2018
London

goo.gl/bVLBc9
Fate of planetary systems: red giant branch

Villaver et al. (2014)
Fate of planetary systems: asymptotic giant branch

Mustill & Villaver (2012)

Time since start of AGB in Myr

Jupiter-mass planets

Earth-mass planets

R_*

$2.0M_\odot$