Eclipsing binary stars with Kepler K2

A foretaste of PLATO complementary science

Dr Pierre Maxted Keele University, Staffordshire, UK

Detached eclipsing binaries

- Best source of precise, model-independent mass and radius measurements for normal stars
- Ideal for testing/calibrating stellar models
- With parallaxes, can also add precise, modelindependent T_{eff} measurements.
- Spectroscopic analysis \Rightarrow T_{eff}, [Fe/H], [α /Fe], A_{Li}

Total eclipses

- Light curve gives $r_1 = R_1/a$, $r_2 = R_2/a$, *i*, *e* cos ω , *, e* sin ω , f_2/f_1
- Narrow total eclipses \Rightarrow inclination $i \cong 90^{\circ}$
- Deep partial eclipses give similar accuracy in parameters
- Shallow partial eclipses more ambiguous spectroscopy helps.

Precision mass measurements

TZ For, HARPS

- $M_1 = 2.057 \pm 0.001 M_{Sun}$
- $M_2 = 1.958 \pm 0.001 M_{Sun}$

Current EB sample

- Mass/radius error ± 1 2%
- Short orbital period
 - (tidally locked)
- Mostly "twin" stars
- Few low mass stars
- Few evolved stars
- Inhomogeneous T_{eff} scale
- [Fe/H] often missing and not homogeneous

Bayesian mass and age estimates for transiting exoplanet host stars Maxted et al., 2015

1 **1**

www.astro.keele.ac.uk/jkt/debcat

K2 light curves - ideal case

K2 data, $K_p=10.1$, P=35.02d

- $R_1/a = 0.02082 \pm 0.00002$
- $R_2/a = 0.01431 \pm 0.00002$
- $i = 89.734 \pm 0.004$
- $e = 0.0458 \pm 0.0008$

± systematic error (tbc)

Maxted & Hutcheon, in prep.

K2 campaigns 1, 2 and 3

Maxted & Hutcheon, in prep.

TZ For

Gallene et al., 2016

TZ For - mass error effect

0.1% mass error

1% mass error

Valle et al. 2017

Helium abundance

HAT-P-11

$Y = Y_{\rm BBN} + 0.984 \, Z + \Delta Y$

$$\rho_{\star} = \frac{3M_{\star}}{4\pi R_{\star}^{3}} = \frac{3\pi}{GP^{2}(1+q)} \left(\frac{a}{R_{\star}}\right)^{3}$$

Tidally induced pulsations

BW Aqr, P = 6.72d, e = 0.18

Star spot modulation

K2 + WASP

 $P=62.59d, e = 0.64, K_p = 12.4$

ellc

- Doppler boosting
- Light travel time effect
- Gravity darkening
- Reflection
- Spots
- Fast!

\$ pip install ellc

Conclusions

- Becoming possible to select a sample of DEBS to suite a given scientific question (DEBS on demand)
 - Certainly true once TESS data are available
- Precision in mass and radius measurements has improved by an order of magnitude in recent years
 - Challenge will be to make sure accuracy is maintained
 - This precision is needed to *calibrate* models
- PLATO will provide asteroseismology for stars in DEBS
 - Can validate mass/radius estimates from asteroseismology
 - Exquisite tests of stellar physics