1

PLATO Complementary Science

website: fys.kuleuven.be/ster/Projects/plato-cs/home

Leuven University, Belgium

Conny Aerts, Andrew Tkachenko, Joris De Ridder, Pierre Royer, Rik Huygen, Bart Vandenbussche

Work Package (WP) leaders

John Southworth (UK), Coralie Neiner (France), Manuel Güdel (Austria), Peter Jonker (Nederlands), Conny Aerts (Belgium), Sergio Simón-Díaz (Spain), Saskia Hekker (Germany), Samaya Nissanke (Nederlands), Ennio Poretti (Italy)

Place within PSM & model philosophy

Scientific programmes distinct from the Core
Science

KU LEUVEN

2

- Makes sure community is ready for optimal GO proposal submission
- Not a main driver of mission design (advisory role: fine-tune target/field selection, optimize integration times, etc.)
- No impact on mission costs (funding at national/local level)
- Variability catalogue & data products through dedicated website

3

How? PLATO Guest Observer

program

Telemetry for GO: 8% open time

Baseline

- 1. \pm 40 targets/pointing for Fast Cam, observed in 2 colours with cadence 2.5 sec cadence and downloading imagettes
- 2. \pm 800 targets/pointing for Norm Cam, observed with cadence 25 sec cadence and downloading imagettes
- 3. \pm 39,200 targets/pointing for Norm Cam, observed with cadence 50 sec cadence and downloading onboard processed light curves
- 4. Target of Opportunity (ToO): no onboard detection but limited to the "known" sources

PLATO-CS: scientific content

9/7/17 The PLATO Mission Conference 2017: Exoplanetary systems in the PLATO era, Warwick, 5-7 September

PLATO-CS: scientific content

9/7/17 The PLATO Mission Conference 2017: Exoplanetary systems in the PLATO era, Warwick, 5-7 September

5

Classification

the what and the why

Production of ariability Catalogu

Relative flux

9/7/17 The PLATO Mission Conference 2017: Exoplanetary systems in the PLATO era, Warwick, 5-7 September

the how - attributes

Production of ariability Catalogu

ASTROPHYSICAL PARAMETERS:

- Temperature
- Surface gravity

MORPHOLOGY:

- Frequencies & harmonics
- Amplitudes
- Skewness

		Classification supervised vs. unsupervised				
		Supervised (pre-defined set of variability types)	Unsupervised (clustering)			
Requires <u>trai</u>	i ning set	\checkmark	X			
A priori knov available	vledge		×			
New variabil can be disco	ity types vered	×	✓			

8

See also talk on binary classification by B. Debski (Thursday)

2640

-14.60

9/7/17

2600

2620

HJD (days)

Magnetism: fossil fields

PLATO-CS: young stars (rotation, seismology), massive stars (rotational modulation, activity, seismology), binary stars (common-envelope, mass-transfer, seismology)

Binary stars

test of stellar evolution

Binary & Multiple

Pulsating Sta

Magnetic Stars &

٠

٠

٠

٠

50%

Sample

• MS stars (assumed)

9/7/17

- Boundary at 6250 K; stars with Teff < 10 000 K
- No ages, masses, evolutionary states

Conclusions

- Theory performs OK, at least for stars with cooler components
- Stars with(out) cool component: tidal dissipation (age) dominates

See also talk on binaries from K2 by P. Maxted (later today)

Asteroseismology

The era of space missions

CoRoT

Separate seismo & exo detectors

5 months/FoV

Seismo: 100 stars with mag = 5 to 9 @ cadence of 32sec

Exo: 175000 stars with mag = 11 to 16 @cadence of 15 min

KU LEÜVEN

Pulsating Stars

Seismo & exo on same detectors

4 years/1 FoV

150,000 stars with mag = 6 to 17

cadence of 1 (500) or 30min (all others)

Solar-like pulsators

KU LEÜVEN

Pulsating Star

Asteroseismic vs. Gaia parallaxes

Solar-like pulsators

KU LEÜVEN

Pulsating Stars

Interior rotation from Kepler

Heat-driven oscillations

Pulsating Stars

g-modes = core rotation

So far: 50-ish core H-burning stars with large range of core rotation

(Kurtz et al. 2014, Saio et al. 2015, Murphy et al.2016, Schmid & Aerts 2016, Van Reeth et al.2016, Quazzani et al. 2017, Pápics et al. 2017, Kallinger et al. 2017)

Ground-based follow-up

Are we fine or (will) need more?

Spectroscopic & Interferometric & Multicolour Follow-up Ennio Poretti

SDSS V: Project Summary

Program	Science Targets	# of Objects or Sky Area	Primary Spectral Range & Hardware	Primary Science Goal
Milky Way Mapper (MWM)	Stars across the Milky Way	>6,000,000 stars, all sky	Infra-red; APOGEE with Fiber Positioning System	Understanding the formation of the Milky Way and the physics of its stars
Black Hole Mapper (BHM)	Black holes	>400,000 black holes, all sky	Optical; BOSS with Fiber Positioning System	Understanding how black holes grow
Local VolumeMapper (LVM)	Interstellar gas in the Milky Way and nearby galaxies	>25,000,000 contiguous spectra over 3000 square degrees	Optical; new IFS (also called LVM)	Probing galaxy formation and regulation from star and black hole formation

Credit: Sloan Digital Sky Survey V proposal by J. Kollmeier et al. (submitted)

9/7/17 The PLATO Mission Conference 2017: Exoplanetary systems in the PLATO era, Warwick, 5-7 September 21