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THE TRADITIONAL WAY
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CoRoT EXAMPLE
ITERATIVE NON-LINEAR FILTER (Aigrain & Irwin 2004)
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CoRoT EXAMPLE

PHASE

RELATIVE 
FLUX

RESIDUAL
S

BOX-LEAST SQUARES TRANSIT SEARCH (Kovacs, Zucker & Mazeh 
2002)

P ~ 20h, 
depth 0.0003, 

Rplanet ~ 2 REarth 
CoRoT-7b

(Leger+2009)
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Sun-like activity doesn’t matter for warm 
Neptunes, hot Super-Earths, etc…
IT DOES FOR TEMPERATE 

EARTHS



Plato Conference, Warwick, 05/09/2017Suzanne Aigrain (Oxford)

NEITHER WHITE NOR 
STATIONARY

FREQUENCY CONTENT of transits vs Total Solar Irradiance (TSI) variations

Jenkins(2002)
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CHANGE IN SINGLE-TRANSIT SNR
over solar activity cycle
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WANT <= 1 FALSE ALARMS over entire mission (1/600,000): 
• threshold MES = 7.1
• expected sensitivity

• ~80% for MES = 7.1 
• ~84% for MES = 8

KEPLER CATALOG GENERATION
• run transit search 
• record all threshold crossing events (TCEs) - 100000’s!!!
• vet them to weed out astrophysical and instrumental false alarms
• community follow-up and/or statistical validation

SETTING THE 
THRESHOLD
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IS THE SUN TYPICAL?

RESIDUAL NOISE (not from known instrumental 
sources) ON TRANSIT TIMESCALES
for bright Kepler main sequence stars

(Gilliland+2011)

THE SUN
Most Sun-like stars 

are MORE VARIABLE than the Sun
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KEPLER TRANSIT INJECTION 
TESTS

Christiansen+(2013,2015a,b,2016,2017)

KSCI-19110-001: Pipeline Detection Efficiency 06/01/2017 
 

16 of 22 

where p is the probability of detection, Γ is the gamma function, x is the expected MES, 
and c is a scaling factor, for MES≤15. A fit of this function to the histograms gives 
coefficients a = 30.87, b = 0.271, c = 0.940. This means that a 50% detection efficiency 
is not achieved until a MES of 8.41, as compared to the idealized 7.1 sigma. As the MES 
increases, the detection efficiency flattens out at ~94%, an improvement over the SOC 
9.2 pipeline for which the transit injection experiment (Christiansen et al. 2015b, 2016) 
recovered 92% for short-period injections (<100 days) and 81% for long-period 
injections (>100 days). 
 

 

 
Figure 2: The fraction of simulated transits recovered as a function of the 
expected multiple event statistic (MES) by the Kepler SOC 9.3 pipeline          
using the Q1-Q17 DR25 pixel-level injected light curves. The black dashed line is 
MES=7.1. The red dashed line is the hypothetical performance of the detector on 
perfectly whitened noise, which is an error function centered at MES=7.1. The 
solid blue line is the gamma CDF fit to the histogram. 
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TCEs
KOIs
candidate planets

KEPLER “FINAL” CATALOG
Thompson+(2017)

ENHANCED VARIABILITY lowers the measured SNR of Earth-like transits

TO CATCH MORE EARTHS: lower the threshold
• means more false alarms too
• only feasible with automated vetting (Robovetter)
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The latest Kepler catalog will yield 
improved estimates of ηEarth

STILL BASED ON VERY SMALL 
NUMBER OF DETECTIONS

PLATO will survey brighter, 
more varied sample of stars
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EVOLVED STAR
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ITS NOT JUST STELLAR 
NOISE
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STOCHASTIC 
PROCESSES

STELLAR VARIABILITY = INTERPLAY OF MAGNETISM & CONVECTION
• too complex / ill understood to predict analytically
• intrinsically STOCHASTIC

MODEL STOCHASTIC PROCESS EXPLICITLY
• parametrise statistical properties of data (mean, covariance)
• build any physical knowledge into model 
• Bayesian framework - marginalise over nuisance parameters
• easily combined with deterministic phenomena (planets)
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LIKELIHOOD: p(y|x,model) = N(y|m,K) 

MEAN FUNCTION: m=f(x,θ), COVARIANCE MATRIX: Kij = k(xi,xj,Φ) 

GIVEN MODEL, can make predictions

GET DATA, condition model, update likelihood and predictions

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c� 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

1.1 A Pictorial Introduction to Bayesian Modelling 3
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Figure 1.1: Panel (a) shows four samples drawn from the prior distribution. Panel
(b) shows the situation after two datapoints have been observed. The mean prediction
is shown as the solid line and four samples from the posterior are shown as dashed
lines. In both plots the shaded region denotes twice the standard deviation at each
input value x.

1.1 A Pictorial Introduction to Bayesian Mod-
elling

In this section we give graphical illustrations of how the second (Bayesian)
method works on some simple regression and classification examples.

We first consider a simple 1-d regression problem, mapping from an input regression

x to an output f(x). In Figure 1.1(a) we show a number of sample functions
drawn at random from the prior distribution over functions specified by a par- random functions

ticular Gaussian process which favours smooth functions. This prior is taken
to represent our prior beliefs over the kinds of functions we expect to observe,
before seeing any data. In the absence of knowledge to the contrary we have
assumed that the average value over the sample functions at each x is zero. mean function

Although the specific random functions drawn in Figure 1.1(a) do not have a
mean of zero, the mean of f(x) values for any fixed x would become zero, in-
dependent of x as we kept on drawing more functions. At any value of x we
can also characterize the variability of the sample functions by computing the pointwise variance

variance at that point. The shaded region denotes twice the pointwise standard
deviation; in this case we used a Gaussian process which specifies that the prior
variance does not depend on x.

Suppose that we are then given a dataset D = {(x1, y1), (x2, y2)} consist- functions that agree
with observationsing of two observations, and we wish now to only consider functions that pass

though these two data points exactly. (It is also possible to give higher pref-
erence to functions that merely pass “close” to the datapoints.) This situation
is illustrated in Figure 1.1(b). The dashed lines show sample functions which
are consistent with D, and the solid line depicts the mean value of such func-
tions. Notice how the uncertainty is reduced close to the observations. The
combination of the prior and the data leads to the posterior distribution over posterior over functions

functions.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c� 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml
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(b) shows the situation after two datapoints have been observed. The mean prediction
is shown as the solid line and four samples from the posterior are shown as dashed
lines. In both plots the shaded region denotes twice the standard deviation at each
input value x.

1.1 A Pictorial Introduction to Bayesian Mod-
elling

In this section we give graphical illustrations of how the second (Bayesian)
method works on some simple regression and classification examples.

We first consider a simple 1-d regression problem, mapping from an input regression

x to an output f(x). In Figure 1.1(a) we show a number of sample functions
drawn at random from the prior distribution over functions specified by a par- random functions

ticular Gaussian process which favours smooth functions. This prior is taken
to represent our prior beliefs over the kinds of functions we expect to observe,
before seeing any data. In the absence of knowledge to the contrary we have
assumed that the average value over the sample functions at each x is zero. mean function

Although the specific random functions drawn in Figure 1.1(a) do not have a
mean of zero, the mean of f(x) values for any fixed x would become zero, in-
dependent of x as we kept on drawing more functions. At any value of x we
can also characterize the variability of the sample functions by computing the pointwise variance

variance at that point. The shaded region denotes twice the pointwise standard
deviation; in this case we used a Gaussian process which specifies that the prior
variance does not depend on x.

Suppose that we are then given a dataset D = {(x1, y1), (x2, y2)} consist- functions that agree
with observationsing of two observations, and we wish now to only consider functions that pass

though these two data points exactly. (It is also possible to give higher pref-
erence to functions that merely pass “close” to the datapoints.) This situation
is illustrated in Figure 1.1(b). The dashed lines show sample functions which
are consistent with D, and the solid line depicts the mean value of such func-
tions. Notice how the uncertainty is reduced close to the observations. The
combination of the prior and the data leads to the posterior distribution over posterior over functions

functions.

GAUSSIAN PROCESSES
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white noise:                                 K = σ2I 

smooth correlated noise:              k(xi,xj)  exp[-Γ(xi-xj)2] 

periodic:                                     k(xi,xj)  exp(-Γ sin2[π(xi-xj)/P])

etc..

TYPES OF GP
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GPs ARE ALREADY USED
in transit modelling

CORRECT  
INSTRUMENTAL  

EFFECTS

MODEL STELLAR VARIABILITY

MODEL TRANSITS
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KOI 2133.01 (Bathala et al. 2013)
• red giant host star

CONFLICTING STUDIES
• Esteves et al. (2013): phase curve 

indicates self-luminous object
• Lillo-Box et al. (2014b) RV + phase curve 

confirm planet
• Sliski & Kipping (2014): stellar density 

from transit and asteroseismology 
inconsistent

RESOLVED by Barclay et al. (2015)
• model out-of-transit variability and transit 

simultaneously 

Kepler-91
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MODEL STELLAR VARIABILITY

GPs ARE ALREADY USED
in systematics correction

MODEL INSTRUMENTAL EFFECTS

DETECT  
TRANSITS
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K2 MISSION: pointing variations + intrapixel variations —> systematics

SYSTEMATICS: unknown 2-D function of star position

STELLAR VARIABILITY: unknown 1-D function of time

NEED FLEXIBLE, JOINT MODEL

K2SC
Aigrain+(2016)

80 DAYS

X / Y

SAP
FLUX



Plato Conference, Warwick, 05/09/2017Suzanne Aigrain (Oxford)

K2 MISSION: pointing variations + intrapixel variations —> systematics

SYSTEMATICS: unknown 2-D function of star position
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K2SC
Aigrain+(2016)

80 DAYS

SYSTEMATICS 
CORRECTED

SYSTEMATICS 
ONLY

SAP 
FLUX

RESIDUALS
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ADVERTISMENT 
BREAK

K2SC version 2 light curves
now available at MAST

Campaigns 3-10
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GPs for DETECTION?

CHALLENGING
• large datasets  - GP regression is O(N3)

POSSIBLE WITH FAST MATRIX INVERSION?
• e.g.: CELERITE (Foreman-Mackey+2017)
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IMPLICATIONS FOR PLATO
DON’T FILTER, MODEL!

• correct known, predictable instrumental effects to best ability
• measure/model the rest, and the stars
• understand better relationship between existing algorithms/GPs
• PLATO pipeline is being defined now…

TEST ON KEPLER LIGHT CURVES 
• we know much more about variability properties of target stars now

CAREFUL TREATMENT OF ACTIVITY WILL BE CRITICAL
• to maximise detection efficiency
• to UNDERSTAND detection efficiency and reliability
• for RADIAL VELOCITY follow-up 


