

Automatic Candidate Validation in the PLATO Era

David Armstrong, Jevgenij Gamper, Theo Damoulas

05/09/2017

(an example) Planet Detection Process

Eyeballing

Candidate Vetting

More automation

Time-consuming, statistically awkward

Hard to interpret

What are the best ML methods here?

Can we use ML for planet validation too?

Can we extract posterior probabilities?

Kepler Testing

- Cumulative KOI catalogue
- 2238 confirmed planets, 1810 false positives
- Focus on separating confirmed and false positives not identifying good candidates within the TCEs
- 149 features. 33 after importance and correlation cuts.

Methods

• 11 different methods, with a range of complexity

 Single decision tree, other simple methods (SVM, K-NN), neural net, random forest varieties

Decision Tree Ensembles	Classifier	AUC	Precision	Recall	Brier
	Random Forest	0.99	0.96	0.94	0.03
	Extra Trees	0.99	0.97	0.93	0.04
	Logistic Regression	0.97	0.94	0.90	0.06
Simple linear classifiers Attempted complexity	LDA	0.97	0.92	0.87	0.07
	Ridge Classifier	0.97	0.92	0.87	0.10
	SV M	0.97	0.92	0.90	0.17
	K-NN	0.96	0.98	0.89	0.06
	MLP	0.96	0.92	0.89	0.07
	QDA	0.95	0.96	0.57	0.20
	Ada-Boost (DT)	0.94	0.93	0.93	0.10
	Decision Tree	0.92	0.95	0.93	0.06

Features

1.2 1.0

0.8 0.6

Armstrong et al 2017

Projections

- Visualisation of the feature space
- Labelled distributed like unlabelled
- Outliers affect the random forest

Decision Tree Ensembles	Classifier	AUC	Precision	Recall	Brier
	Random Forest	0.99	0.96	0.94	0.03
	Extra Trees	0.99	0.97	0.93	0.04
Simple linear classifiers	Logistic Regression	0.97	0.94	0.90	0.06
	LDA	0.97	0.92	0.87	0.07
	Ridge Classifier	0.97	0.92	0.87	0.10
Attempted complexity	SVM	0.97	0.92	0.90	0.17
	K-NN	0.96	0.98	0.89	0.06
	MLP	0.96	0.92	0.89	0.07
	QDA	0.95	0.96	0.57	0.20
	Ada-Boost (DT)	0.94	0.93	0.93	0.10
	Decision Tree	0.92	0.95	0.93	0.06

GP Classifier

- Provide uncertainties and probabilities
- Forced simplicity -Linear kernel and inducing points
- Still ~98% but not overconfident where it shouldn't be

Are the Planets Planets?

- Outputs based only on input data
- In this run: signal strength signal shape, secondary eclipse, centroid offset, optical ghosts

• As such, FP designations are likely reliable, plus general ranking

Validation – Posterior Probabilities

• We have the lightcurve shape and vetting data.

- Lack of stellar observations or *a priori* blending likelihood compared to usual methods.
 - Could be added (GAIA?)
- At this point, extremely optimistic, but worth a try

Summary

• ML methods extremely effective on the surface

- Significant risk of overfitting/overconfidence can be mitigated
- Already good for ranking, FP exclusion
- Perhaps eventually for full planet validation?
 - As a complementary, independent and fast method

Development Possibilities

- Use simulated training sets
 - Large numbers possible
 - We control the inputs
- Feed in knowledge of target star

- Simulations need extreme care to cover all FP scenarios with realistic input distributions
 - Time consuming to set up very fast once done

Outliers

 Remove outliers from training set

 No large performance drop, but less overfitting

