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What are the best ML methods here?

Can we use ML for planet validation too?

Can we extract posterior probabilities?



Kepler Testing 

• Cumulative KOI catalogue

• 2238 confirmed planets, 1810 false positives

• Focus on separating confirmed and false positives – not identifying 
good candidates within the TCEs

• 149 features. 33 after importance and correlation cuts.



Methods

• 11 different methods, with 
a range of complexity

• Single decision tree, other 
simple methods (SVM, K-
NN), neural net, random 
forest varieties
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F igur e 3. K epler labeled and unlabeled data visualized using mult i-dimensional scaling with FP probabilit ies ext racted from random

forest . M arker shape represents the t rue label: down t riangle for false posit ive, circle for confirmed planet , and diamond for unlabeled

data points. Cyan out lined and black out lined pentagons represent labeled and unlabeled data cluster means respect ively.

TheBrier scoremeasures the correctnessof probabilist ic

predict ions of each model. The lower the score, the more

accurate are the probability predict ions of the classifiers.

Further, the met rics of recall and specificity are com-

bined into an evaluat ion method called receiver operator

characterist ic (ROC) curves. Many classificat ion algorithms

provide a real valued probability output that has to be

thresholded to give a classificat ion. Therefore, for each clas-

sifier we vary the probability threshold and compute it s pre-

cision and recall values. Result ing curves on the recall and

precision axis would ideally reach to hit the top left corner,

where both false posit ive predict ion rate and t rue posit ive

predict ion rate is high, we do not plot the ROC curves as

these are close to indist inguishable for our models, and only

compute and discuss area under the curve (AUC) scores .

The AUC results as well as other met rics can be found in

table 2.

Decision Tree based ensembles perform the best on the

test set , as well as on the t raining set . Other models are

very close in performance to random forest , with varying

abilit ies to ident ify FP signal in the data judging by the

recall. The top performers of DT ensembles are followed by

relat ively simpler classifiers, such as basic logist ic regression,

LDA, SVM and K-NN. In part icular, it is interest ing to note

that in cases of discriminant analysis and support vector

Tab le 2. Test set performance of t he t op classifiers using the

parameters from Table 1 and opt imized on the t raining set .

Classifier AUC Precision Recall Brier

Random Forest 0.99 0.96 0.94 0.03

Ext ra Trees 0.99 0.97 0.93 0.04

Logist ic Regression 0.97 0.94 0.90 0.06

LDA 0.97 0.92 0.87 0.07

Ridge Classifier 0.97 0.92 0.87 0.10

SVM 0.97 0.92 0.90 0.17

K -NN 0.96 0.98 0.89 0.06

MLP 0.96 0.92 0.89 0.07

QDA 0.95 0.96 0.57 0.20

Ada-Boost (DT ) 0.94 0.93 0.93 0.10

Decision Tree 0.92 0.95 0.93 0.06

machines, linear variat ions performed bet ter than QDA, or

other complex kernel funct ions. The cont rast is part icularly,

significant in the case of LDA and QDA, where QDA signif-

MNRAS 000, 1–11 (2015)
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Features

Armstrong et al 2017

Secondary

Centroid

Optical ghosts
Transit 
SNR

Transit 
Shape

Ephemeris 
correlation



Projections

• Visualisation of the 
feature space

• Labelled distributed 
like unlabelled

• Outliers – affect the 
random forest
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GP Classifier

• Provide uncertainties 
and probabilities

• Forced simplicity -
Linear kernel and 
inducing points

• Still ~98% - but not 
overconfident where it 
shouldn’t be



Are the Planets Planets?

• Outputs based only on input data

• In this run: signal strength, signal shape, secondary eclipse, 
centroid offset, optical ghosts

• As such, FP designations are likely reliable, plus general ranking



Validation – Posterior Probabilities

• We have the lightcurve shape and vetting data. 

• Lack of stellar observations or a priori blending likelihood 
compared to usual methods.
• Could be added (GAIA?)

• At this point, extremely optimistic, but worth a try







Summary

• ML methods extremely effective on the surface

• Significant risk of overfitting/overconfidence – can be 
mitigated

• Already good for ranking, FP exclusion

• Perhaps eventually for full planet validation?
• As a complementary, independent and fast method



Development Possibilities

• Use simulated training sets
• Large numbers possible

• We control the inputs

• Feed in knowledge of target star

• Simulations need extreme care – to cover all FP scenarios 
with realistic input distributions
• Time consuming to set up – very fast once done



• Remove outliers from 
training set

• No large performance 
drop, but less overfitting

Outliers


