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Deep Neural Networks

Input Layer Hidden Layers Output Layer

Inspiration: human visual cortex



Training using Backpropagation

Supervised learning: given examples with ground truth
(‘training set’)

Loss function (error quantification)

Loss depends analytically on the synaptic weights

Back-propagation of derivatives (chain rule) through
layers

Slowly update the synaptic weights (e.g. gradient descent,
Metropolis-Hastings, etc.) to minimize loss




Deep Learning

» Comeback of neural networks (~2005)
* Depth made all the difference

* Depth (number of layers) allows
significant abstraction

* Progress made possible by hardware

* Breaks records of performance




Deep Learning Revolution

Computer vision

— Scene parsing, face recognition, handwriting
recognition, etc.

Speech recognition
Automatic machine translation
Genomics (e.g. roles of non-coding DNA sequences)

Drug discovery (e.g. predict metabolic fate of a
molecule)

Autonomous cars

... and many more




E

ssential Ingredients

Large and comprehensive training set

Deep network (many layers)

Adequate network architecture

— Convolutional neural networks (ConvNets)

— Fully Convolutional networks (FCN)

— Recurrent neural networks (RNN)

— Residual

' networks (ResNets)

Back-pro

pagation scheme




Typical Task #1: Image Classification

4

Microsoft competition: dogs vs. cats (Kaggle dataset)
Design a code that will distinguish between cats and dogs

98.9% right! (Pierre Sermanet, 2014)




Typical Task #2: Image Denoising

Remez et al. 2017



pical Task #3: Image Segmentation

Shelhamer et al. 2017




Relevant Tasks for PLATO

 Transit detection (‘classification’, #1)
* Detrending (‘denoising’, #2)

* Individual transit identification
(‘segmentation’, #3)

 Estimates of false positive/negative rates




Feasibility Study

* Cadence 5 min

* Time span ~21 days

(6144 samples)
 Training set:
— 83333 lightcurves with transits

— 83333 lightcurves with no transits




Feasibility Study

 GP Simulated red noise:

[ (ti—t)\? sin?[n(t;—t;)/T, ti—t\2
k(ti — tj) = Agexp - (/1_5]) ]"‘Aé exp [_ [ (2 ]) q] - ( Aq]) ]'l' A\z/v(s(tl - t])

* Ay ~20-500ppm, A; ~2 - 500 ppm
« A, =140 explo.2(M-M_. )]
* M~10-16

* A, ~1min - 10 hours, T, ~ 10 - 500 hours

* A4 ~16.6 - 500 hours




Feasibility Study

 Trapezoidal simulated transits:

P ~16.6 hours - 4.2 days

Depth ~ 103 - 10
* Duration ~ 30 min - 3.3 hours




Feasibility Study

One-layer FCN for detection
(actually not ‘deep’ learning)

Applied on the Fourier amplitudes
* Testing:

— 16667 lightcurves with transits

- 16667 lightcurves with no transits

7% false positives, 12% false negatives




Feasibility Study

1
SNR proxy

d
SNR proxy: ;W/P
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Feasibility Stud
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Conclusions

* Deep learning neural networks may be
the way forward.

* They may achieve unprecedented results
A fundamentally different approach




