Current performance of seismic diagnostics and stellar parameter determination

Margarida Cunha

Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto

PLATO Mission Conference 2017: Exoplanetary systems in the PLATO era

Fundamental properties of stars (from asteroseismology)

Mass, Radius, Age (mean density, surface gravity)

- ♦ Stellar inclination
 - => Stellar obliquity
- Internal physics and dynamics of stars

 (e.g., depth of convective envelopes, presence/extent of convective cores, stellar rotation, etc)
 - => Improve stellar models

PLATO Mission Conference 2017: Exoplanetary systems in the PLATO era

Fundamental properties of stars (from asteroseismology)

=> planet properties and age of exoplanetary system

♦ Stellar inclination

=> Stellar obliquity

Internal physics and dynamics of stars

(e.g., depth of convective envelopes, presence/extent of convective cores, stellar rotation, etc)

=> Improve stellar models

PLATO Mission Conference 2017: Exoplanetary systems in the PLATO era

 \diamond Frequency of maximum power: v_{max}

 \diamond Large separation: Δv

PLATO Mission Conference 2017: Exoplanetary systems in the PLATO era

Frequency of maximum power: v_{max}

$$v_{
m max} \propto g T_{
m eff}^{-1/2}$$

\diamond Large separation: Δv

$$\left< \Delta v_{nl} \right> \propto \left< \rho \right>^{1/2}$$

PLATO Mission Conference 2017: Exoplanetary systems in the PLATO era

\Rightarrow Frequency of maximum power: v_{max}

$$v_{
m max} \propto g T_{
m eff}^{-1/2}$$

\diamond Large separation: Δv

$$\left< \Delta v_{nl} \right> \propto \left< \rho \right>^{1/2}$$

Individual frequencies

PLATO Mission Conference 2017: Exoplanetary systems in the PLATO era

 \diamond Frequency of maximum power: v_{max}

$$v_{
m max} \propto g T_{
m eff}^{-1/2}$$

♦ Large separation: Δv $\langle \Delta v_{nl} \rangle \propto \langle \rho \rangle$ ♦ Individual frequencies

PLATO Mission Conference 2017: Exoplanetary systems in the PLATO era

\Rightarrow Frequency of maximum power: v_{max}

$$v_{
m max} \propto g T_{
m eff}^{-1/2}$$

 \diamond Large separation: Δv

$$\left<\Delta v_{nl}\right> \propto \left< \rho \right>^{1/2}$$

♦ Individual frequencies

Frequency ratios / separations ; phases

PLATO Mission Conference 2017: Exoplanetary systems in the PLATO era

Non-seismic Observables

+ T_{eff}
 For precise radius and surface gravity determination

+ Metallicity
 To better constrain stellar masses and ages

Luminosity, interferometric radius, etc (when available)

PLATO Mission Conference 2017: Exoplanetary systems in the PLATO era

Procedures for inference of stellar properties

- ♦ Scaling relations
- ♦ Forward Modelling
- Signatures of rapid structural variations
- ♦ Seismic Inversions

Centro de Astrofísica da Universidade do Porto PLATO Mission Conference 2017: Exoplanetary systems in the PLATO era

Procedures for inference of stellar properties

Scaling relations

♦ Forward Modelling

Signatures of rapid structural variations

♦ Seismic Inversions

Centro de Astrofísica da Universidade do Porto PLATO Mission Conference 2017: Exoplanetary systems in the PLATO era

♦ Direct use of scaling relations

$$v_{
m max} \propto g T_{
m eff}^{-1/2}$$

$$\left<\Delta v_{nl}\right> \propto \left<
ho \right>^{1/2}$$

PLATO Mission Conference 2017: Exoplanetary systems in the PLATO era

♦ Direct use of scaling relations

$$\int_{\text{max}} \propto g T_{\text{eff}}^{-1/2} \qquad \left\langle \Delta v_{nl} \right\rangle \propto \langle \Delta v_{nl} \rangle$$

$$\frac{R}{R_{\odot}} \approx \left(\frac{v_{\text{max}}}{v_{\text{max},\odot}}\right) \left(\frac{\overline{\Delta v}}{\overline{\Delta v_{\odot}}}\right)^{-2} \left(\frac{T_{\text{eff}}}{T_{\text{eff},\odot}}\right)^{1/2},$$
$$\frac{M}{M_{\odot}} \approx \left(\frac{v_{\text{max}}}{v_{\text{max},\odot}}\right)^{3} \left(\frac{\overline{\Delta v}}{\overline{\Delta v_{\odot}}}\right)^{-4} \left(\frac{T_{\text{eff}}}{T_{\text{eff},\odot}}\right)^{3/2},$$

Provide R and M only Uncertainties are larger than the requirements for PLATO (~5% in radius and ~10% in mass for dwarfs)

PLATO Mission Conference 2017: Exoplanetary systems in the PLATO era

♦ Forward Modelling

PLATO Mission Conference 2017: Exoplanetary systems in the PLATO era

♦ Forward Modelling

Fit a set of observables:

$$\{y_i\} = \{T_{\text{eff}}, [\text{Fe}/\text{H}], (L), seismic\}$$

with uncertainties σ_i

With theoretical observables produced from models with parameters

$$\{a_j\} = \{M, Y_0, (Z_0), (\alpha_{\text{MLT}}), (\text{ov}), \text{ age, etc}\}$$

PLATO Mission Conference 2017: Exoplanetary systems in the PLATO era

Different approaches to forward modelling

➤ ≠ physics

(evolutionary codes ; micro/macrophysics)

z combinations of observables
 (individual frequencies; ratios; phases; global seismic)

model parameter space and ways to explore it
 (grid / models on demand)

✓ methods to find best model (optimisation)

PLATO Mission Conference 2017: Exoplanetary systems in the PLATO era

 \diamond Exercise 1: From Reese et al. 2016

- > $\{y_i\}=\{T_{eff}, [Fe/H], (L/L_{\odot}), seismic\}$
- 1 yr obs per star
- > 8 different pipelines

5735 K < T_{eff} < 6586 K 0.73 < L/L_{\odot} < 4.36 0.78 < M/M_{\odot} < 1.33

PLATO Mission Conference 2017:

Exoplanetary systems in the PLATO era

Average error and biases
Aardvark
Elvis $\varepsilon_{rel} = 1.47 \%$ $\varepsilon_{rel} = 0.88 \%$ $b_{rel} = -0.99 \%$ $b_{rel} = -0.49 \%$

$$el. = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \left(\frac{p_i^{\text{fit}} - p^{\text{exact}}}{p^{\text{exact}}}\right)^2}$$

$$b_{\text{rel.}} = \frac{1}{N} \sum_{i=1}^{N} \left(\frac{p_i^{\text{fit}} - p^{\text{exact}}}{p^{\text{exact}}} \right)$$

PLATO Mission Conference 2017: Exoplanetary systems in the PLATO era

Average error and biases
Aardvark
Elvis $\varepsilon_{rel} = 3.88\%$ $\varepsilon_{rel} = 2.43\%$ $b_{rel} = -2.51\%$ $b_{rel} = -1.32\%$

rel. =
$$\sqrt{\frac{1}{N} \sum_{i=1}^{N} \left(\frac{p_i^{\text{fit}} - p^{\text{exact}}}{p^{\text{exact}}}\right)^2}$$

PLATO Mission Conference 2017: Exoplanetary systems in the PLATO era

Average error and biases
Aardvark
Elvis $\varepsilon_{rel} = 6.81 \%$ $\varepsilon_{rel} = 9.35 \%$ $b_{rel} = -5.66 \%$ $b_{rel} = -8.16 \%$

rel. =
$$\sqrt{\frac{1}{N} \sum_{i=1}^{N} \left(\frac{p_i^{\text{fit}} - p^{\text{exact}}}{p^{\text{exact}}}\right)^2}$$

$$b_{\text{rel.}} = \frac{1}{N} \sum_{i=1}^{N} \left(\frac{p_i^{\text{fit}} - p^{\text{exact}}}{p^{\text{exact}}} \right)$$

PLATO Mission Conference 2017: Exoplanetary systems in the PLATO era

 \diamond Exercise 1: From Reese et al. 2016

Average error and biases

		Felix	George	Jam
R	ε _{rel}	2.93 %	1.23 %	1.63 %
	b _{rel}	-1.08 %	0.87 %	1.00 %
Μ	$\boldsymbol{\epsilon}_{rel}$	6.16 %	3.74 %	4.71 %
	b _{rel}	-3.27 %	2.00 %	3.37 %
Age	ε _{rel}	40.18 %	33.93 %	33.32 %
	b _{rel}	20.18 %	-6.72 %	-23.15 %

Centro de Astrofísica da Universidade do Porto PLATO Mission Conference 2017: Exoplanetary systems in the PLATO era

Exercise 2: From W120 (PLATO-LESLIA-PSPM-TS-01)

PLATO "reference" star: M=1.12 M $_{\odot}$ R=1.20 R $_{\odot}$ Age=3.44 Gyr

Simulations were performed for V=9, V=10, and V=10.5,
2 yr observations, accounting for the PLATO Noise levels.

PLATO Mission Conference 2017: Exoplanetary systems in the PLATO era

PLATO Mission Conference 2017: Exoplanetary systems in the PLATO era

\diamond Exercise 2: Campante et al.

Sample: 100 planet-host stars ; ~50% are evolved stars Expected Δv and v_{max} from TESS mission

PLATO Mission Conference 2017: Exoplanetary systems in the PLATO era

 $\label{eq:second} \stackrel{$$ \ensuremath{\leftarrow}}{$ \ensuremath{\mathsf{Set 1:}}\ \{y_i\}=\{\mathsf{T}_{eff},\ [m/H],\ L\} \\ $$ \ensuremath{\mathsf{Set 2:}}\ \{y_i\}=\{\mathsf{T}_{eff},\ [m/H],\ L,\ \Delta\nu,\ \nu_{max}\} \\ \end{aligned}$

PLATO Mission Conference 2017: Exoplanetary systems in the PLATO era

\diamond Exercise 2: Campante et al.

PLATO Mission Conference 2017: Exoplanetary systems in the PLATO era

Study 1: Chaplin et al. 2014
 > {y_i}={T_{eff}, [Fe/H], ∆v, (v_{max})}
 > 1 month obs per star
 > 6 different pipelines

Set 1: ~500 stars T_{eff} from photometry [Fe/H]=-0.2±0.3 dex

Set 2: 87 stars T_{eff} and [Fe/H] from spect.

8000 7500 7000 6500 6000 5500 5000 4500 $T_{\rm eff}$ (K)

PLATO Mission Conference 2017: Exoplanetary systems in the PLATO era

Study 1: Chaplin et al. 2014 Set 1 : The worst case scenario

Median uncertainties

(formal plus grid scatter)

Radius: 4.4% Mass: 10.8% Age: 34%

PLATO Mission Conference 2017:

Warwick 5-7 September 2017

Exoplanetary systems in the PLATO era

Study 1: Chaplin et al. 2014 Set 2: The impact of spectroscopy

♦ Study 2: Silva Aguirre et al. 2017

{y_i}={T_{eff}, [Fe/H], seismic}
 At least 1 yr obs per star
 7 different pipelines

Kepler Legacy Sample

PLATO Mission Conference 2017: Exoplanetary systems in the PLATO era

♦ Study 2: Silva Aguirre et al.

Range of median uncertainties Radius: 1.3%-4.2% Mass: 2.3%-4.5% Age: 6.7%-20%

PLATO Mission Conference 2017: Exoplanetary systems in the PLATO era

8

6

4

2

0

0.0

0.1

0.2

0.3

 $\sigma_{\rm Age}/{\rm Age}$

0.4

Kernel density

Warwick 5-7 September 2017

0.6

0.7

0.5

♦ Study 2: Silva Aguirre et al.

Average uncertainties Radius: ~ 2% Mass: ~ 4% Age: ~ 10%

instituto de astrofísica e ciências do espaço

PLATO Mission Conference 2017: Exoplanetary systems in the PLATO era

Benchmark stars

Parameters from forward modelling are model-dependent

Independent accurate determinations of the stellar parameters enables us to identify biases

Possible Benchmark stars

Stars in reach of interferometry (for radii)

Stars in particular binary systems

Eclipsing +SB2 binaries (for radii and masses)

SB2 + Astrometric or visual/interferometric (for masses)

PLATO Mission Conference 2017: Exoplanetary systems in the PLATO era

Benchmark stars

Comparison with interferometric radius

PLATO Mission Conference 2017: Exoplanetary systems in the PLATO era

Conclusions

Asteroseismic data, in particular oscillation frequencies =>
 M, R, and Age determined with higher precision.

Precise Mass and Age determinations require knowledge of stellar metallicity.

◆ For a star not too different from the sun, and magnitude
 V≈8-10, Radius, Mass, and Age can be determined to precision
 better than ≈ 2%, 5%, and 10%, respectively.

Forward modelling of large samples of Kepler targets provides average uncertainties of similar magnitude when individual frequencies are available.

PLATO Mission Conference 2017: Exoplanetary systems in the PLATO era

Thank you for your attention

Obrigada!

PLATO Mission Conference 2017: Exoplanetary systems in the PLATO era