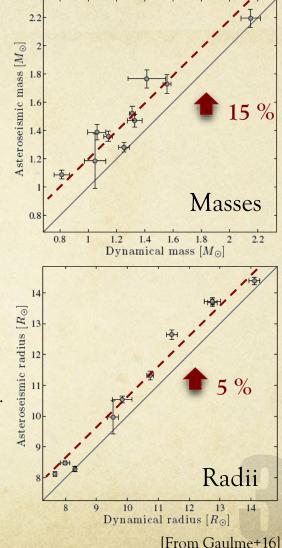
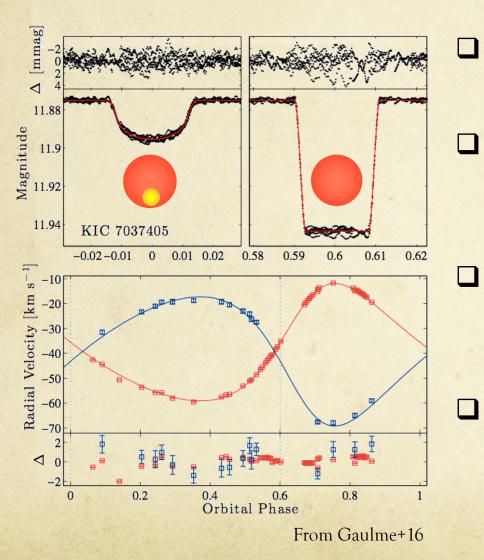

Calibrating Asteroseismology with Multiple-Star Systems

MAX PLANCK INSTITUTE FOR SOLAR SYSTEM RESEARCH

Patrick Gaulme [New Mexico State University, USA] [Max Planck Institute for Solar System Research, Germany]


Context

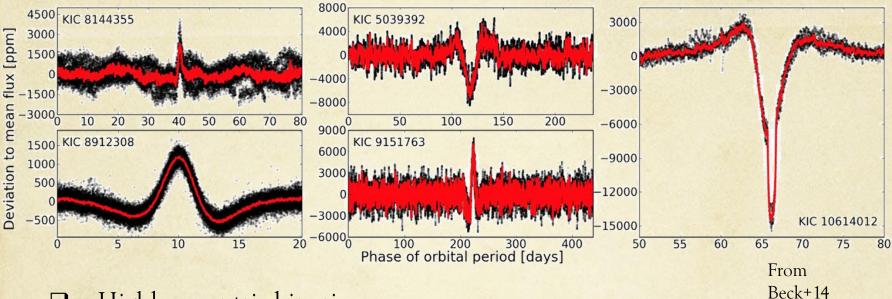
□ Solar-like stars: asteroseismology leads to global & internal properties


- Scaling relations: comparison oscillations properties with the Sun's.
 Mass, radius ⇔ inference on age and distance
- Massive use for Galactic archeology, exoplanetary properties, etc
- Classical pulsators (e.g., γ Dor, δ Sct, β Ceph, SPB, Be, roAp): asteroseismology is more complex than for solar-like stars
 - Difficulty in mode identification, rotational splitting, frequency combinations, mode selection, etc
 - Significant progresses lately (Bedding+15, Kurtz+15, Van Reeth+15)
- □ Important need for PLATO
 - Solar-like: scaling relations have never been thoroughly calibrated
 - Classical pulsators: workbenches to help deciphering oscillations
- Main focus on solar-like stars, but keeping in mind characterizing classical pulsators is very important too.

How to calibrate asteroseismology?

- Theoretical works
 - > Most regard $\Delta v \Box \rho$ (Stello+09; White+11; Miglio+13)
 - $\sim v_{max}$ g has less secure theoretical basis (Belkacem+11)
 - Need for independent M,R measurements of osc. stars
- 🛛 Radii
 - ➤ Astrometry (GAIA): distance, extinction ⇔ radius
 - > Interferometry: radius, provided LD, and bright enough
 - Accuracy within 5% (Huber+11,+12; Silva Aguirre+12; Baines+14)
- □ Masses: not many options
 - Binaries, triple systems (eclipse LC + RVs)
 - Gaulme+16: M overestimated by 15%, R by 5% for 10 red giants in EBs.
 - $\blacktriangleright Brogaard et al (submitted): 3 RG/EB from Gaulme+16 sample. No significant overestimation provided <math>\Delta v$ modified
- □ Need a large sample
 - > 50 solar-like from main sequence to red giant
 - 50 classical pulsators (g Dor, d Sct, hybrid)

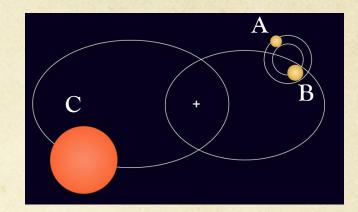
Eclipsing Binaries



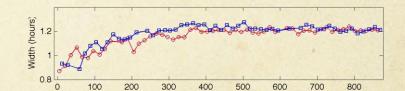
Double-lined spectroscopic binaries (SB2)

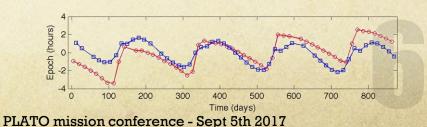
- Eclipse photometry
 - R1/a, R2/a, T2/T1, e, i, limb darkening, P_{orb}, T₀,
 - Radial velocities
 M1 sini, M2 sini, P_{orb}, T₀, e,
 Ω

 Combined analysis: M1, M2, R2, R2

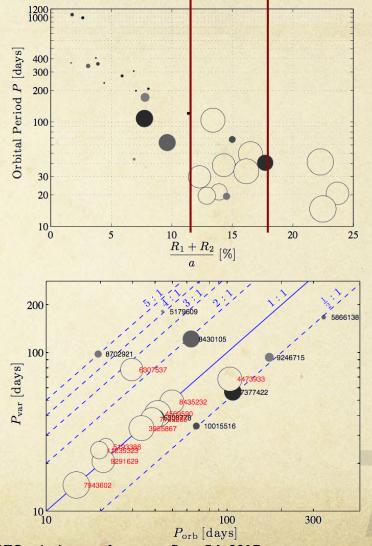

Eccentric binaries "heartbeat stars"

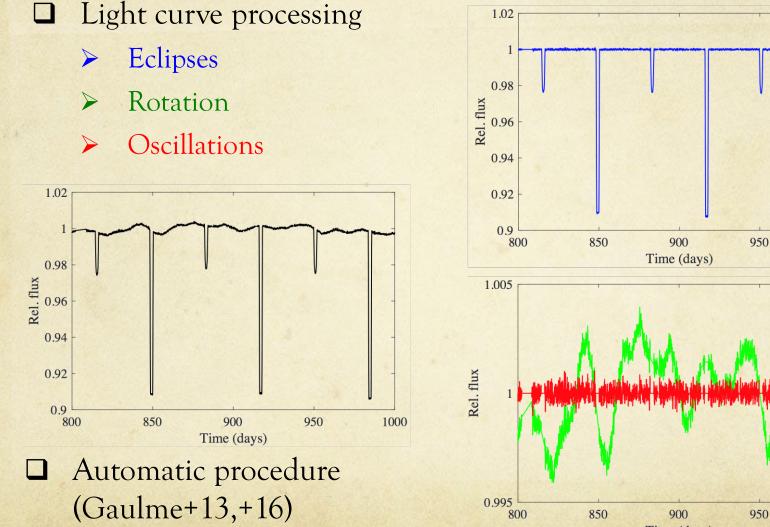



- Highly eccentric binaries
 - Tidal distortion at periastron, tidal modes
 - LC modeling: inclination
 - Complementary RVs: if SB2 we can extract masses
- □ Are there many SB2s among heartbeat stars?
 - Likely not: small companion ⇔ long circularization & synchronization timescales (e.g., none in Beck+14)


Hierarchical triple systems

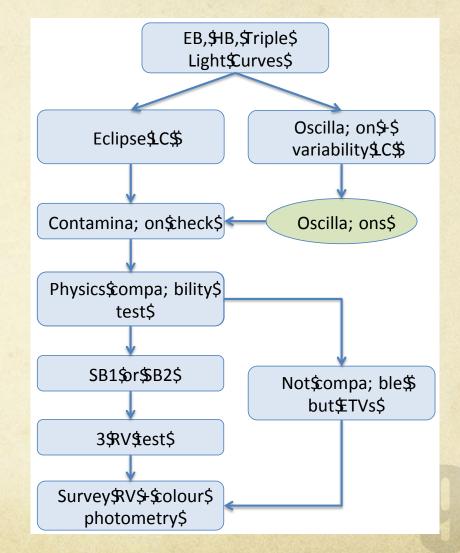
- □ Red giant + 2 main sequence
 - Eclipse timing variations
 - Light travel time + dynamical effects allow for estimating M_C and M_{A,B}
 - Rough estimate though (Borkovits+16)
- Complementary RVs
 SB1 condition sufficient to measure Mc





Oscillations suppression

- Solar-like oscillators in EBs: only Kepler red giants
- Oscillations are suppressed when systems are too close (Gaulme+14)
 - [R1+R2]/a < 12 % always oscillations</p>
 - > [R1+R2]/a > 18% no oscillations
 - Non-oscillating RGs: usually synchronized + circularized
- Triple system: no oscillations in Derekas+11 system
- Systems must not be too close


Time (days) PLATO mission conference - Sept 5th 2017 1000

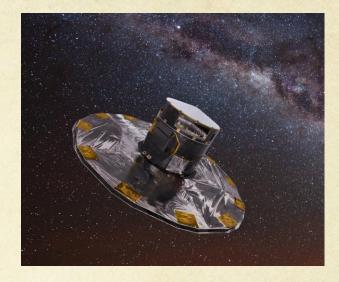
1000

Target selection

- Orbital period. E.g., for RGs, cannot be much less than 10 days
- Target pixel files

 (contamination):
 comparison deepest
 eclipse and largest
 oscillation pixels
- Kepler's third law: mass ratio
- SB1 vs SB2 from 1 optical spectrum
- RV variations

Kepler and CoRoT: so far 24 solar-like and 25 classical pulsators for which masses can be determined


Osc type	System type	SB1/SB2	Osc.	#	#
Evolved Solar-like	EB: RG+MS	SB2	RG	17	24
	EB: RG+RG	SB2	1RG	2	
	HT: ETV (LTTE+dyn)	?	RG	5	
	EB: RG+MS	SB1	RG	15	59
	EB: RG+MS	SB2	None	18	
	HT: ETV	?	RG	6	
	HB: RG+MS	?	RG	20	
Classical	dEB: MS+MS	SB2	δSct	20	
	SD: MS+MS	SB2	and/or 2 γ Dor 3	25	
	ELV: MS+MS	SB2		3	

<u>From:</u> Gaulme+13,+14,+16; Beck+14,+15; Gaulme&Guzik+14, Coughlin+11, Garcia-Hernandez+15, Gaulme in prep.

Existing databases: Kepler, K2, CoRoT

- ➢ Few more EBs in Kepler among ≈3,000 EB catalog
- K2: catalog of ≈700 EBs. Orbits limited to 90 days
- CoRoT: 2,000 EBs + a few triple. Orbits limited to 180 days

- Main issue: so far, no solar-like oscillating main sequence and subgiant in EBs
- TESS: increase sample size; brighter magnitudes
- GAIA: expected to detect 250,000 EBs that are SB2
 - 40 RV measurements per star
 - Insufficient photometric precision
 - TESS targets
- D PLATO
 - Workbench targets from GAIA EB catalog
 - Ground-based support: photometry, spectormetry (atm. param.)

Conclusions

- Calibrating asteroseismology of solarlike stars is fundamental for PLATO
- Reference classical pulsators will help deciphering their oscillation spectra
- Goal of at least 50 and 50 stars
- Red giants and classical pulsators: "easily" doable with current databases
- Main sequence & subgiants: GAIA, TESS. If not sufficient, prepare target characterization from ground for PLATO.
- Significant need of ground-based observations in the next 5-10 years: HR spectrometry, color photometry

