A review of TTV techniques,
and their appllcatlon to PLATO
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Transiting planets allow us
to measure the transit
center (To) and hence the
orbital period Pvery
precisely.

Transit Time Variation (TTV)
is @ dynamical technique to:

Brightness

Time

1) measure the masses of multiple planetary systems
without need of (on in synergy with) radial velocities (RV);

2) discover new planets (not necessarly transiting) which
are perturbing the known ones
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Simple 2-body system (star +
planet): strictly constant P —
linear ephemeris, flat O-C

diagram —t—
Multiple planetary system: .
mutual perturbations, P af
changes —» TTV! In principle N e
we can infer the perturber -
parameters (including mass) W
from the O-Cshape § SR iR
Outside particular cases, TTV e M st
is a small effect (ATo ~ seconds I P e
- ATo/P ~ 10°) TN




TTV are strongly boosted
by low-order mean-motion
resonances! (MMR: P2/P: =
2:1, 3:2 etc)

(and to a lower extent, by
eccentricity and mutual
inclination: Veras+ 2011)

Resonant systems are
common among Kepler
multiple systems (7%+18%
on 3:2 and 1:2, Wang+
2014)
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O-C diagrams are not
necessarily flat or periodic,
due to multiple perturbers,
mutual perturbations, chaotic
configurations, chopping, etc.

Sometimes they can be very
complicated, aperiodic and
highly dependent on initial
conditions! (Veras+ 2011)
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Measuring TTV at best requires:

1) high-precision photometry (especially when
monitoring low-mass planets, which are the best
candidate to being hosted in multiple systems; Rowe+
2014);

2) Fast-cadence sampling (at least to optimally sample T
and T_; i.e. <a few minutes);

3) keeping correlated (“red”) noise at minimum.

— PLATO will deliver <34 ppm/h photon-limited
photometry of ~15,000 bright dwarfs at 50-s cadence for
>2 yr!



In principle TTV analysis 0.002 _(a)a _pb141 au, M, =6Mg ,'_f
require N-body dynamical 0.000 £ /% 7 S I8 ,"1 YAy 1‘2 -
integration and is numerically 002 E¥ 7, 0 S M ¥ K L 3R
challenging (many free S 0.002 (b)a = 00495 au, My = 10Mo 3 5
parameters, forrests of local ~ & 0.000 =~ \/\ \ r’\/ Yhor B
-0.002 %—é

minima, long integration b
times, multiple degeneracies 0.002 £ °’a = 0.0511 au, My = 1 MK%

stability checks)... in particular, ~ %0% =/\/\/\/\/'\//\//\/
200

the solution could not be '0'002
unique! Epoch

600

A few codes have been developed specifically to solve the
TTV problem: TTVFast (Deck+ 2014) and TRADES
(Borsato+ 2014). Particular configurations may allow an
analytic or semi-analytic approaches (e.g. Lithwick+ 2012)




TRADES: Transits and Dynamics of Exoplanetary Systems
(Borsato+ 2014, A&A 571, 38)

. Genetic Algorithm Particle Swarm
Grid search (GA,PIKAIA) Optimization

of one body: (PSO)
M,P e w
global search

local search
Levenberg-Marquardt (LM)
algorithm

parameter determination
based on X2analysis

bootstrap analysis




Kepler-9 (Holman+ 2010) is a
pair of transiting hot Saturns
around a faint (V~14) G2
dwarf. RV confirmation
unfeasible or expensive!
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The planets are locked close
to a 2:1 resonance at P~19,
~39 d and show impressive
(~hours), anti-correlated
TTVs = dynamical modeling
— planetary masses!




. [ observations = simulations
Full TRADES dynamical e ST S
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Again, mass estimates are consistent with each other and confirm

the five most inner planets (here without any help from RVs)



PLATO will deliver hundreds of
telluric and neptunian planetary
candidates around P1 (V<11) stars;
~30% of them will be in multiple
systems (Lissauer+ 2011).

Basing on the Kepler experience
(Ford+2012), 215% of them will
show detectable TTVs — “easy” &
cheap validation/confirmation from
PLATO photometry alone




Unlike Kepler, PLATO is focused on discovering planets
hosted by bright stars (V<11) for which an RV Follow-
up is feasible through a reasonable effort

Exploiting the
RV+TTV
complementarity —
solving
degeneracies, full
characterization of
the system (mutual
inclinations, true
masses, etc.)

number

1007

501

G-

i Kepler planets
Ry planets

4 &

8 10 12

V magnitude

14 16



90
COM
CVN

5CL
-90










	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

