Transport of angular momentum within stars

Patrick Eggenberger

Département d'Astronomie de l'Université de Genève

The solar rotation profile

• Helioseismic measurements

– Problem with shellular rotation

Pinsonneault et al. 1989; Chaboyer et al. 1995; Talon et al. 1997; Eggenberger et al. 2005; Turck-Chièze et al. 2010

The solar rotation profile

• Effects of magnetic fields

$$\rho \frac{\mathrm{d}}{\mathrm{d}t} \left[r^2 \Omega \right] = \frac{1}{5r^2} \frac{\partial}{\partial r} \left[\rho r^4 \Omega U \right] + \frac{1}{r^2} \frac{\partial}{\partial r} \left[\rho (D_{\mathrm{shear}} + \nu_{\mathrm{magn}}) r^4 \frac{\partial \Omega}{\partial r} \right]$$

The solar rotation profile

• Effects of internal gravity waves

Charbonnel & Talon 2005

Asteroseismology of MS stars

Impact of MS angular momentum transport on exoplanets

PLATO Mission Conference 2017

Asteroseismology of MS stars

• Solar-like oscillations in MS stars

mean internal rotation from rotational splittings + independent measurements of surface rotation rates

Asteroseismology of MS stars

- Slowly rotating δ Scuti/γ Dor and SPB stars : ~ SB rotation (Kurtz et al. 2014; Saio et al. 2015; Schmid et al. 2015; Murphy et al. 2016; Triana et al. 2015; Kallinger et al. 2017)
- SB rotation also for faster rotating MS stars? (Van Reeth et al. 2016; Ouazzani et al. 2017)
- β Ceph stars : non-rigid rotation with $\Omega_{core} \sim 3 \Omega_{env}$ (Aerts et al. 2003; Dupret et al. 2004; Ausseloos et al. 2004; Pamyatnykh et al. 2004) or compatible with SB rotation (Briquet et al. 2007)

15

10

 V_{eq} [km s $^{-1}$]

Impact of post-MS angular momentum transport
 on planet engulfment

AM exchange with the planet + internal transport of AM

PLATO Mission Conference 2017

1.5 M

1.7 M_☉ 2 M_☉

2.2 M

2.5 M

0.0

 Impact of post-MS angular momentum transport on planet engulfment

High surface magnetic fields + impact of magnetic braking

Privitera et al. 2016

• Rotational splittings for solar-like oscillations in red giants

- Mixed modes in KIC 8366239 (Beck et al. 2012): 1.5 M_{\odot} with Z_{\odot}

- Mixed modes in the red giant KIC 8366239
 - Additional mechanism for the transport of angular momentum:

$$\rho \frac{\mathrm{d}}{\mathrm{d}t} \left[r^2 \Omega \right] = \frac{1}{5r^2} \frac{\partial}{\partial r} \left[\rho r^4 \Omega U \right] + \frac{1}{r^2} \frac{\partial}{\partial r} \left[\rho (D_{\mathrm{shear}} + \nu_{\mathrm{add}}) r^4 \frac{\partial \Omega}{\partial r} \right]$$

$$\delta v_{\mathrm{rot}}^{\mathrm{wings}} \delta v_{\mathrm{rot}}^{\mathrm{centre}} = 1.5$$

$$\Rightarrow v_{add} = 3 \cdot 10^4 \ \mathrm{cm}^2 \ \mathrm{s}^{-1}$$

see study by Goupil et al. (2013)

Eggenberger et al. 2012

• KIC 7341231: a low-mass red giant

- Internal rotation (Deheuvels et al. 2012) 1500 $\Omega_{c} = 710 \pm 51 \text{ nHz}$ $\Omega_{\rm s} < 150 \pm 19 \text{ nHz}$ - Negligible impact of the rotational history on v_{add} (AM transport and surface braking by magnetized winds during MS and PMS):

0

4.5

$$v_{add} = 1.10^3 - 1.3.10^4 \text{ cm}^2 \text{ s}^{-1}$$

3.5

Eggenberger et al. 2017

4

log(g)

• Kepler-56

5 /2π [μHz] - Precise estimates of rot only: $V_i = 20 \text{ km/s}$ rot only: $V_i=1$ km/s $v_{add}=1\cdot 10^4$ cm²/s $v_{add}=3\cdot 10^4$ cm²/s both core and surface 3 and $\Omega_{\rm s}/$ rotation rates (Huber et al. 2013) 2 $\Omega_{
m o}/2\pi$ and $\Omega_{
m s}/2\pi$ $[\mu {
m Hz}]_{\Omega_{
m o}/2\pi}$ Ŧ $v_{add} = 1.4 \pm 0.1 \cdot 10^4 \, \text{cm}^2 \, \text{s}^{-1}$ $v_{add} \lor when M \lor$ $V_i = 20 \text{ km/s}$ $V_i = 25 \text{ km/s}$ 0.5 $V_i = 30 \text{ km/s}$ $l_i = 40 \text{ km/s}$ 0 3.8 3.6 3.4 3.2 3 log(g)

- Rotational splittings for 6 *Kepler* subgiants and young RGs
 - Core and surface rotation rates precisely determined
 - Increase of differential rotation when evolution proceeds?

Deheuvels et al. 2014

- Location of the angular velocity gradient
 - KIC 4448777 (Di Mauro et al. 2016) + 2 subgiants (Deheuvels et al. 2014)

- $\delta v / \delta v_{max}$: differential rotation in the radiative zone (Klion & Quataert 2017)

- Core rotation rates for a large number of evolved stars
 - Sample of Mosser et al. (2012) + Deheuvels et al. (2014)

- Core rotation rates for a large number of evolved stars
 - Evolution of core rotation rates: red giants

- Core rotation rates for a large number of evolved stars
 - Red giants burning helium in non-degenerate conditions

Tayar & Pinsonneault 2013

• Physical nature of the missing transport mechanism

- Modelling of turbulence (Marques et al. 2013)

• Physical nature of the missing transport mechanism

Cantiello et al. 2014

- IGW generated by turbulent pressure: not efficient (Fuller et al. 2014)
- IGW generated by penetrative convection: not efficient for red giants but efficient for subgiants (Pinçon et al. 2017)

• Physical nature of the missing transport mechanism

- Transport of angular momentum by mixed modes

Summary

- Additional mechanism for the transport of angular momentum
 - Needed for the Sun and slowly rotating low-mass MS stars.
 Also needed for more massive/faster rotating MS stars?
 - Needed for subgiants and red giants
- Efficiency and physical nature of the additional mechanism
 - For subgiants and red giants: v_{add} can be precisely determined
 - Red giants: v_{add} \urcorner with mass and evolutionary state
 - Magnetic fields: fossil fields? MHD instabilities: v_{add} ok with AMRI
 - IGW: not for red giants. subgiants: penetrative convection
 - Mixed modes: efficient for evolved red giants