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Preface

These notes follow the lectures on Functional Analysis given in the Autumn Term of
2009. If you find a mistake or misprint please inform the author by sending an e-mail
to v.gelfreich@warwick.ac.uk. The author thanks James Robinson for his set of
notes and selection of exercises which significantly facilitated the preparation of the
lectures. The author also thanks all students who helped with proofreading the notes.

1 Vector spaces

1.1 Definition.

A vector space V over a field K is a set equipped with two binary operations called
vector addition and multiplication by scalars. Elements of V' are called vectors and
elements of K are called scalars. The sum of two vectors x,y € V is denoted x + y, the
product of a scalar o € K and vector x € V is denoted otx.

It is possible to consider vector spaces over an arbitrary field K, but we will con-
sider the fields R and C only. So we will always assume that K denotes either R or C
and refer to V as a real or complex vector space respectively.

In a vector space, addition and multiplication have to satisfy the following set of
axioms: Let x,y, z be arbitrary vectors in V, and o, B be arbitrary scalars in KK, then

e Associativity of addition: x+ (y+2z) = (x+y) +z.
e Commutativity of addition: x+y =y+z.

e There exists an element 0 € V, called the zero vector, such that x + 0 = x for all
xeV.

e For all x € V, there exists an element y € V, called the additive inverse of x, such
that x +y = 0. The additive inverse is denoted —x.

e “Associativity” of multiplicationﬂ o(Bx) = (ap)x.
e Distributivity:

a(x+y)=ox+ oy and (a4 B)x = ox+ Bx.

There is an element 1 € K such that 1x = x for all x € V. This element is called
the multiplicative identity in K.

'The purist would not use the word “associativity” for this property as it includes two different
operations: o/f3 is a product of two scalars and Bx involves a vector and scalar.



It is convenient to define two additional operations: subtraction of two vectors and
division by a (non-zero) scalar are defined by

1.2

1.

Sl

X—=Yy = x+(_y)7
x/a = (1/a)x.

Examples of vector spaces
R" is a real vector space.

C" is a complex vector space.

C" is a real vector space.

The set of all polynomials P is a vector space:

n
P:{Zakxk: OckGK,nGN}.
k=0

. The set of all bounded sequences ¢ (K) is a vector space:

=(K) = { (x1,x2,...) : xx € Kforall k € N, sup|xg| < 00} )
keN

For two sequences x,y € £*(K), we define x+y by
x+y=(x1+y1,x+y2,-..).
For o € K, we set
ox = (oxy, axg,...).

We will always use these definitions of addition and multiplication by scalars for
sequences.

Let 1 < p < oo. The set £7(K) of all p! power summable sequences is a vector
space:

EP(K): {(xl,XQ,...): xp €K, i|xk|p<°°}.

k=1
The definition of the multiplication by scalars and vector addition is the same

as in the previous example. Let us check that the sum x+y € ¢?(K) for any
x,y € £P(K). Indeed,

Y byl <Y (el + viD)” < ) 2P (el + [yl )
k=1 k=1 k=1

IN

20 ) P 427 Y [elP < oo
=1 =1



7. The space C|0, 1] of all real-valued continuous functions on the closed interval
[0,1] is a vector space. The addition and multiplication by scalars are defined
naturally: for f,g € C[0,1] and o € R we defined by f + g the function whose
values are given by

(f+e)@) = f()+g(), t€[0,1],

and af is the function whose values are

(of)(t) = af(t),  1€][0,1],

We will always use these definitions on all spaces of functions to be considered
later.

8. The set L' (0,1) of all real-valued continuous functions f on the open interval
(0,1) for which

[ 17wl <=
0

is a vector space.

If f € C[0,1] then f € L'(0,1). Indeed, since [0, 1] is compact f is bounded (and
attains its lower and upper bounds). Then

[ 10l < max 70)) <

ie felLl(0,1).

We note that L!(0,1) contains some functions which do not belong to C[0, 1].
For example, (1) =t~'/2 is not continuous on [0, 1] but it is continuous on

(0,1) and
1 1 1
/|f(t)|dt:/ 1|2 = 262 =2 < oo,
0 0 0

so f € L'(0,1).
We conclude that C[0, 1] is a strict subset of f € L'(0,1).

1.3 Hamel bases

Definition 1.1 The linear span of a subset E of a vector space V is the collection of
all finite linear combinations of elements of E:

n
Span(E)z{xGV:szajej, neN, ajcK, ejEE}.
j=1

We say that E spans V if V = Span(E), i.e. every element of V can be written as a
finite linear combination of elements of E.



Definition 1.2 A set E is linearly independent if any finite collection of elements of E
is linearly independent:

n
Z(Xjej:O — aog=0m=---=0,=0
j=1

for any choice ofn €N, ej € E and a; € K.

Definition 1.3 A Hamel basis E for V is a linearly independent subset of V which
spans V.

Examples:
1. Any basis in R" is a Hamel basis.

2. Theset E = { 1,x,x%, ... } is a Hamel basis in the space of all polynomials.

Lemma 1.4 If E is a Hamel basis for a vector space V then any element x € V can be
uniquely written in the form
n
X = Z oje;
j=1

wheren €N, o € Kande; € E.
Exercise: Prove the lemma.
Definition 1.5 We say that a set is finite if it consists of a finite number of elements.

Theorem 1.6 If'V has a finite Hamel basis then every Hamel basis for V has the same
number of elements.

Definition 1.7 If V has a finite basis E then the dimension of V (denoted dimV ) is
the number of elements in E. If V has no finite basis then we say that V is infinite-
dimensional.

Example: In R” any basis consists of n vectors. Therefore dimR"” = n.

Let V and W be two vector spaces over K.

Definition 1.8 A map L:V — W is called linear if for any x,y € V and any o0 € K
L(x+ay) = L(x) + aL(y) .

Definition 1.9 If a linear map L : V — W is a bijection, then L is called a linear
isomorphism. We say that V and W are linearly isomorphic if there is a bijective
linearmap L.V — W.



Proposition 1.10 Any n-dimensional vector space over K is linearly isomorphic to
K".

Proof: If E ={e;:1 < j<n}isabasisinV, then every element x € V is represented
uniquely in the form

n
X = Z aje;.
j=1
The map L: x — (@y,...,0,) is a linear bijection V — K". Therefore V is linearly
isomorphic to K”. O

In order to show that a vector space is infinite-dimensional it is sufficient to find an
infinite linearly independent subset. Let’s consider the following examples:

1. ¢P(K) is infinite-dimensional (1 < p < o0).
Proof. The set
E =1{(1,0,0,0,...), (0,1,0,0,...), (0,0,1,0,...), ...}
is not finite and linearly independent. Therefore dim ¢7(K) = oo.
Remark: This linearly independent subset is not a Hamel basis. Indeed, the

sequence x = (x1,X2,X3,...) with x; = e~* belongs to ¢”(K) for any p > 1 but
cannot be represented as a sum of finitely many elements of the set E.

2. C[0,1] is infinite-dimensional.

Proof: The set E = {x* : k € N} is linearly independent subset of C°[0, 1]: In-
deed, suppose

px)=Y ok =0 forallx € [0,1].
k=1

Differentiating the equality n times we get p (x) = n!o, = 0. Which implies
o, = 0. Therefore p(x) = 0 implies oy = O for all k.

The linearly independent sets provided in the last two examples are not Hamel
bases. This is not a coincidence: we will see later that ¢7(KK) and C[0, 1] (as well as
many other functional spaces) do not have a countable Hamel basis.

Theorem 1.11 Every vector space has a Hamel basis.

The proof of this theorem is based on Zorn’s Lemma.

We note that in many interesting vector spaces (called normed spaces), a very large
number of elements should be included into a Hamel basis in order to enable repre-
sentation of every element in the form of a finite sum. Then the basis is too large to
be useful for the study of the original vector space. A natural idea would be to allow
infinite sums in the definition of a basis. In order to use infinite sums we need to de-
fine convergence which cannot be done using the axioms of vector spaces only. An
additional structure on the vector space should be defined.



2 Normed spaces

2.1 Norms

Definition 2.1 A norm on a vector space V is amap || - || : V. — R such that for any
x,y €V and any o € K:

1. ||x|]| >0, and ||x]| =0<x=0 (positive definiteness);
2. ||ax|| = |o] ||x]| (positive homogeneity);
3. x4yl < Ixl|+ Iyl (triangle inequality).

The pair (V.|| - ||) is called a normed space.

In other words, a normed space is a vector space equipped with a norm.

Examples:

1. R" with each of the following norms is a normed space:

@ [xl =/} bl
k=1

n 1/p
®) [lx]l, = (ZIXH”) < p<eo

k=1

© [lx]leo = [max |-
2. ¢P(K) is a vector space with the following norm (1 < p < o)
oo 1/p
1xller = <Z !Xk!p> :
k=1
3. £=(K) is a vector space with the following norm

[l = = sup x|
keN

In order to prove the triangle inequality for the /¥ norm, we will state and prove
several inequalities.



2.2 Four famous inequalities

Lemma 2.2 (Young’s inequality) Ifa,b >0, 1 < p,q < oo, 117 + é =1, then

a? bl
ab < —+ —.
P q

Proof: Consider the function f (¢ —1+ 1 defined forr > 0. Since f/(t) =t?~ ' —1

vanishes at7 = 1 only, and f” (1) = ( — 1)~ 5 > 0, the point r = 1 is a global minimum
for f. Consequently, f(¢) > f(1) =0 for all > 0. Now substitute = ab~%/P:

rPh—4 1
f(ab_q/p):a —ab™ 9P+ - >0.
p q
Multiplying the inequality by b7 yields Young’s inequality. U
Lemma 2.3 (Holder’s inequality) If 1 < p,g < %—i— %1 =1, x € P(K), y € t4(K),

then

Y vl < lxller |y lleo -
j=1

Proof. If 1 < p,q < o, we use Young’s inequality to get that for any n € N

i sy i(l 1P 1 \yj\q) 1.1
)< .

=t xller HyHeq =\ p Tl el ) =5 e

Therefore for any n € N
n
Y byl < llxller [y lleo
j=1
Since the partial sums are monotonically increasing and bounded above, the series

converge and Holder’s inequality follows by taking the limit as n — oo,
If p=1and g =oo:

Y by < max | 2 el < il ¥l
j=1

Therefore the series converges and Holder’s inequality follows by taking the limit as
n — oo, ([l

Lemma 2.4 (Cauchy-Schwartz inequality) Ifx,y € (>(K) then

o - 1/2 - 1/2
N (z |x,~|2> (z w) |
= = =



Proof: This inequality coincides with Holder’s inequality with p = g = 2. U
Now we state and prove the triangle inequality for the ¢ norm.
Lemma 2.5 (Minkowski’s inequality) If x,y € (P(K) for 1 < p < oo then x+y €
P (K) and
x4 yller < [lxller +lIyller -

Proof: If 1 < p < oo, define g from 119 + é = 1. Then using Holder’s inequality (finite
sequences belong to /7 with any p) we getE]

(ngE

n
Y l+ylt =
=

|x] +)’J| |xj+)’j|

~.
Il
_

n
i+ g4 Y L+ 1P s
=1

n VVa s, 1/p
(Z xj+yjl |(p=1)a ) (Z ]xj|p> (Holder’s inequality)
=1 j=1

" Vg s, 1/p
(Z xj+yjl p 1)q> <Z|yj|p> )
—1 j=1

1/q
Dividing the inequality by (Z?:l xj+y j|P> and using that (p —1)g=pand 1 —

1 — 1 we get forall n

q p
(300" ($) "+ (£
j=1 j=1 j=1

The series on the right hand side converge to ||x|[s» + ||y|/¢». Consequently the series
on the left hand side also converge, x+y € ¢”(K), and Minkowski’s inequality follows
by taking the limit as n — oo.

IA
M=

~.
I
_

IN

Exercise: Prove Minkowski’s inequality for p = 1 and p = oo. U

2.3 Examples of norms on a space of functions

Each of the following formulae defines a norm on C|0, 1], the space of all continuous
functions on [0, 1]:

2We do not start directly with n = oo because a priori we do not know convergence for some of the
series involved in the proof.



1. the “sup(remum) norm”

1flleo = sup [ (z)

t€[0,1]

’

2. the “L! norm”

1
£l = [ 1r@)lar:

1= ( 1 okar) 1/2.

Exercise: Check that each of these formulae defines a norm. For the case of the L2
norm, you will need a Cauchy-Schwartz inequality for integrals.

3. the “L? norm”

Example: Let k € N. The space C¥[0, 1] consists of all continuous real-valued func-
tions which have continuous derivatives up to order k. The norm on C¥[0, 1] is defined
by

k .
Ifllex =Y, sup [fV(0)],

j=01€[0,1]

where f (/) denotes the derivative of order J.

2.4 Equivalence of norms

We have seen that various different norms can be introduced on a vector space. In order
to compare different norms it is convenient to introduce the following equivalence
relation.

Definition 2.6 Two norms || - ||| and || - ||2 on a vector space V are equivalent if there
are constants cy,cy > 0 such that

cllxlli < llxl2 < ealixlls  forallxeV.
In this case we write || - |1 ~ || - [|2-
Theorem 2.7 Any two norms on R" are equivalentEI

Example: The norms || - ||;1 and || - || on C[0, 1] are not equivalent.

3You already saw this statement in Analysis III and Differentiation in Year 2. The proof is based
on the observation that the unit sphere § C R” is sequentially compact. Then we checked that f(x) =
|lx[|2/]lx||1 is continuous on S and consequently it is bounded and attains its lower and upper bounds on
S. We set ¢; = ming f and ¢, = maxg f.



Proof: Consider the sequence of functions f,(¢) = ¢" with n € N. Obviously f, €
C0, 1]. We see that

w = max |t|"=1,

Ifall= = max i
1
= t"dt = :
Il = [ e = —

Suppose the norms are equivalent. Then there is a constant ¢ > 0 such that for all f,:

Wl < ez,

[/l
which is not possible for all n. This contradiction implies the norms are not equivalent.

O

2.5 Linear Isometries
Suppose V and W are normed spaces.
Definition 2.8 If a linear map L : V. — W preserves norms, i.e. |L(x)|| = ||x|| for all

x €V, itis called a linear isometry.

This definition implies L is injective, i.e., L : V — L(V) is bijective, but it does not im-
ply L(V) =W, i.e., Lis not necessarily invertible. Note that sometimes the invertibility
property is included into the definition of the isometry. Finally, in Metric Spaces the
word “isometry” is used to denote distance-preserving transformations.

Definition 2.9 We say that two normed spaces are isometrically isomorphic (or simply
isometric), if there is an invertible linear isometry between them.

A linear invertible map can be used to “pull back™ a norm as follows.

Proposition 2.10 Let (V,||-||v) be a normed space, W a vector space, and L: W —V
a linear isomorphism. Then

[llw = (L) [|v

defines a normon W.
Proof: For any x,y € V and any o € K we have:

Ixllw = [ILG)[lv =0,
loexllw = [[L(ax)llv = || [L(x)[lv = le] [lxlw -

If ||x|lw = ||L(x)||y =0, then L(x) = 0 due to non-degeneracy of the norm || - ||y. Since
L is invertible, we get x = 0. Therefore || - ||y is non-degenerate.

10



Finally, the triangle inequality follows from the triangle inequality for || - ||y:

x+ylw = [1LG) + L) v < (LG v + LGl = llxllw + [[y]Iw -

Therefore, || - ||w is a norm. O

Note that in the proposition the new norm is introduced in such a way that L :
(W, |- llw) — (V.|| - |lv) is a linear isometry.

Let V be a finite dimensional vector space and n = dimV. We have seen that V is
linearly isomorphic to K". Then the proposition implies the following statements.

Corollary 2.11 Any finite dimensional vector space V can be equipped with a norm.

Corollary 2.12 Any n-dimensional normed space V is isometrically isomorphic to K"
equipped with a suitable norm.

Since any two norms on R" (and therefore on C") are equivalent we also get the
following statement.

Theorem 2.13 Let V be a finite-dimensional vector space. Then all norms on'V are
equivalent.

11



3 Convergence in a normed space

3.1 Definition and examples

The norm on a vector space V can be used to measure distances between points x,y € V.
So we can define the limit of a sequence.

o0
n=1’

Definition 3.1 A sequence (x;)
€ > 0 there is N € N such that

x, €V, n € N, converges to a limit x € V if for any

|x,—x|| <€  foralln>N.
Then we write x,, — Xx.

We note that the sequence of vectors x,, — x if and only if the sequence of non-
negative real numbers ||x, — x| — 0.

Proposition 3.2 The limit of a convergent sequence is unique.
Exercise: Prove it.

Proposition 3.3 Any convergent sequence is bounded.
Exercise: Prove it.

Proposition 3.4 If x, converges to x, then ||x,|| — ||x]|-

Exercise: Prove it.

It is possible to check convergence of a sequence of real numbers without actually
finding its limit: it is sufficient to check that it satisfies the following definition:

Definition 3.5 (Cauchy sequence) A sequence (x,);,_, in a normed spaceV is Cauchy
if for any € > 0 there is an N such that

||%0 — x| < € forall m,n > N.
Theorem 3.6 A sequence of real numbers converges iff it is Cauchy.
Proposition 3.7 Any convergent sequence is Cauchy.
Exercise: Prove it.
Proposition 3.8 Any Cauchy sequence is bounded.

Exercise: Prove it.

12



Example: Consider the sequence f, € C[0, 1] defined by f,(r) ="

1. f, — 0inthe L' norm.

Proof: We have already computed the norms:

1
| fullpr = P 0

Consequently, f, — 0. U

2. f, does not converge in the sup norm.
Proof: If m > 2n > 1 then

1 1 1

—1/ny\ _ —1/n _ - -

Consequently (f,) is not Cauchy in the sup norm and hence not convergent.

This example shows that the convergence in the L' norm does not imply the point-
wise convergence and, as a results, does not imply the convergence in the sup norm
(often called the uniform convergence). Note that in contrast to the uniform and L!
convergences the notion of pointwise convergence is not based on a norm on the space
of continuous function.

Exercise: The pointwise convergence does not imply the L! convergence.

Hint: Construct f,, with a very small support but make the maximum of f, very
large to ensure that || f,||;1 > n. Therefore f, is not bounded in the L; norm, hence not
convergent.

We can also make supp f;, N supp f, = 0 for all m, n such that n # m. Then for any
t there is at most one n such that f,(¢) # 0. The last property guarantees pointwise
convergence: f,(t) — 0 for any 7. O

Proposition 3.9 If f, € C[0,1] for alln € N and f, — f in the sup norm, then f, — f
in the L' norm, i.e.,

[fn = flle — 0 = lfn—fllp — 0.
Proof:

1
0< lfu=Fllor= | n(®) = FO1ds < sup 1£u(6) = £0)| = s~ Fll 0.

Therefore || f,, — f||;1 — 0. O

We have seen that different norms may lead to different conclusions about conver-
gence of a given sequence but sometime convergence in one norm implies convergence
in another one. The following lemma shows that equivalent norms give rise to the same
notion of convergence.

13



Lemma 3.10 Suppose ||- ||| and || - ||2 are equivalent norms on a vector space V. Then
for any sequence (xy):

=i =0 & |x—x[2—0.
Proof: Since the norms are equivalent, there are constant ¢, c; > 0 such that
0 < el —xl[1 < [lxn = x[l2 < el — x|l

for all n. Then ||x, — x||2 — 0 implies ||x,, — x||; — 0, and vice versa. O

3.2 Topology on a normed space

We say that a collection .7 of subsets of V is a topology on V if it satisfies the following
properties:

1. 0,V e 7,
2. any finite intersection of elements of .7 belongs to .7;
3. any union of elements of .7 belongs to .7.

A set equipped with a topology is called a topological space. The elements of .7
are called open sets. The topology can be used to define a convergent sequence and
continuous function.

We note that each norm on V' can be used to define a topology on V, i.e., to define
the notion of an open set.

Definition 3.11 A subset X C 'V is open, if for any x € X there is € > 0 such that the
ball of radius € centred around x belongs to X :

B(x,e) ={yeV:|y—x|<e}CX.
Example: In any normed space V:
1. The unit ball centred around the zero, By = {x : ||x|| < 1}, is open.
2. Any open ball B(x, €) is open.
3. V is open.
4. The empty set is open.

It is not too difficult to check that the collection of open sets defines a topology
on V. You can easily check from the definition that equivalent norms generate the
same topology, i.e., open sets are exactly the same. The notion of convergence can be
defined in terms of the topology.

14



Definition 3.12 An open neighbourhood of x is an open set which contains x.

Lemma 3.13 A sequence x,, — x if and only if for any open neighbourhood X of x
there is N € N such that x, € X foralln > N.

Proof: (= ). Let x,, — x. Take any open X such that x € X. Then there is € > 0 such
that B(x,€) C X. Since the sequence converges there is N such that ||x, — x| < € for
all n > N. Then x,, € B(x,€) C X for the same values of n.

(«<=). Take any € > 0. The ball B(x,€) is open, therefore there is N such that
xn € B(x,€) for all n > N. Hence ||x, —x|| < € and x,, — x. O

3.3 Closed sets
Definition 3.14 A set X CV is closed if its complement V \ X is open.

Example: In any normed space V:
1. The unit sphere S = {x: ||x|| = 1} is closed

2. Any closed ball
B(x.e) ={yeV:[y—x|<e}

is closed.
3. Visclosed.
4. The empty set is closed.

Lemma 3.15 A subset X C 'V is closed if and only if any convergent sequence in X
has its limit in X.

Proof: The proof literally repeats the proof given in Differentiation. U

Definition 3.16 We say that a subset L C V is a linear subspace, if it is a vector space
itself, i.e., if x;,x, € Land A € K imply x; + Ax; € L.

Proposition 3.17 Any finite dimensional linear subspace L of a normed space V is
closed.

Proof: Since L is finite-dimensional, it has a finite Hamel basis
E={ey,ez,...,ey} CL

such that L = Span(E). Suppose L is not closed, then by Lemma there is a
convergent sequence x; — x*, x; € L but x* € V' \ L. Then x* is linearly independent
from E (otherwise it would belong to L). Consequently

E: {61,62,...,€n,x*}

15



is a Hamel basis in L = Span(E). In this basis, the components of x; are given by

(Oc{‘, ...,0f,0) and x* corresponds to the vector (0,...,0,1). We get in the limit as
k — oo

(af,....ak,0)—(0,...,0,1),
which is obviously impossible. Therefore L is closedE] U

Example: The subspace of polynomial functions is linear but not closed in C[0, 1]
equipped with the sup norm.

3.4 Compactness

Definition 3.18 (sequential compactness) A subset K of a normed space (V|| - |lv) is
(sequentially) compact if any sequence (x,);,_, with x, € K has a convergent subse-
quence x,; — x* withx* € K.

Proposition 3.19 A compact set is closed and bounded.
Theorem 3.20 A subset of R" is compact iff it is closed and bounded.

Corollary 3.21 A subset of a finite-dimensional vector space is compact iff it is closed
and bounded.
Example: The unit sphere in ¢7(K) is closed, bounded but not compact.

Proof: Take the sequence e; such that

7™ place

We note that ||e; — || = 2!/7 for all j # k. Consequently, (e j)7-1 does not have any
convergent subsequence, hence S is not compact. 0

Lemma 3.22 (Riesz’ Lemma) Let X be a normed vector space and Y be a closed
linear subspace of X such thatY # X and o € R, 0 < @ < 1. Then there is xo € X
such that ||x¢|| = 1 and ||xq —y|| > o forally €Y.

Proof: Since Y C X and Y # X thereisx € X \ Y. Since Y is closed, X \ Y is open and
therefore
d:=inf{||x—y||:yeY}>0.

“This proof implicitly uses equivalence of norms on R"*! to establish that convergence in the norm
obtained by restricting the original norm || - ||y onto L implies convergence of the components of the
vectors.
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Since o~! > 1 there is a point z € Y such that ||x —z|| < do~!. Let x4 = ‘;:;. Then

|X|| =1and forany y € Y,

x—z [x—(+lx—zn)]| = 4
L ety S
lx—2]] [lx—2]] da~!
as z+ |[x —z||y € Y because Y is a linear subspace. O

Theorem 3.23 A normed space is finite dimensional iff the unit sphere is compact.

Proof: Bolzano-Weierstrass Theorem and Lemma [3.15] imply that in a finite dimen-
sional normed space the unit sphere is compact (the unit sphere is bounded and closed).

So we only need to show that if the unit sphere § C B is sequentially compact, then
the normed space V is finite dimensional. Indeed, if V is infinite dimensional, then
Riesz’ Lemma can be used to construct an infinite sequence of x, € S such that ||x, —
Xm|| > o > 0 for all m # n. This sequence does not have a convergent subsequence
(none of the subsequences is Cauchy) and therefore S is not compact.

We construct x, inductively. Fix a € (0, 1) and take any x; € S.

Suppose that for some n > 1 we have found E,, = { x1,...,x, } such that x; € S and
||x; —xx|| > o for all 1 < k,l < n, k+# [ (note that the second property is automatically
fulfilled for n = 1). The linear subspace Y,, = Span(E,) is n-dimensional and hence
closed (see Proposition [3.17). Since X is infinite dimensional ¥, # X. Then Riesz’
Lemma implies that there is x| € S such that ||x,+1 —xi|| > a forall 1 <k <n.

Repeating this argument we generate x,, for all n € N. 0

17



4 Banach spaces

4.1 Completeness: Definition and examples

Definition 4.1 (Banach space) A normed space V is called complete if any Cauchy
sequence in 'V converges to a limit in V. A complete normed space is called a Banach
space.

Theorem 4.2 Every finite-dimensional normed space is complete.

Proof: Theorem implies that R is complete, i.e., every Cauchy sequence of num-
bers has a limit.

Now let V be a real vector space, dimV = n < . Take any basis in V. Then
a sequence of vectors in V' converges iff each component of the vectors converges,
and a sequence of vectors is Cauchy iff each component is Cauchy. Therefore each
component has a limit, and those limits constitute the limit vector for the original
sequence. Hence V is complete.

Considering C as a real vector space we conclude that it is also complete. There-
fore, any finite-dimensional complex vector space V is also complete. U

In particular, R"” and C" are complete.

Theorem 4.3 (¢” is a Banach space) The space (P (K) equipped with the standard (P
norm is complete.

Proof: Suppose that x* = (x%,x4,...) € £7(K) is Cauchy. Then for every € > 0 there is
N such that

= Y - <
j=1

for all m,n > N. Consequently, for each j € N the sequence x’; is Cauchy, and the
completeness of K implies that there is a; € K such that

xk-—>aj

J

as k — oo. Let a = (ay,ay,...). First we note that for any M > 1 and m,n > N:
M oo
Y Wl < Y- <e.
Jj=1 Jj=1

Taking the limit as n — o we get

Y W —alf <e.

Jj=1

18



This holds for any M, so we can take the limit as M — oo:
Y —alr <e.
J=1

We conclude that x” —a € ¢7(K). Since ¢7(K) is a vector space and X" € (P (K), then
a € (P (K). Moreover, |[x™ —al|;» < € for all m > N. Consequently X" — a in 7 (K)
with the standard norm, and so ¢”(K) is complete. O

Theorem 4.4 (C is a Banach space) The space C|0, 1] equipped with the sup norm is
complete.

Proof: Let f; be a Cauchy sequence. Then for any € > 0 there is N such that

sup |fu(t) = fm(t)| <€

t€[0,1]

for all m,n > N. In particular, f,(¢) is Cauchy for any fixed ¢ and consequently has a
limit. Set

£(1) = lim £, (1),
Let’s prove that f,,(1) — f(¢) uniformly in 7. Indeed, we already know that
|fn(t) _fm(t)| <€

for all n,m > N and all ¢ € [0, 1]. Taking the limit as m — oo we get

[fat) = f(1)] < €

forall n > N and all 7 € [0, 1]. Therefore f, converges uniformly:

[fn = flleo = sup] 1fu(t) = f(1)| < .

t€f0,1

for all n > N. The uniform limit of a sequence of continuous functions is continuous.
Consequently, f € C[0, 1] which completes the proof of completeness. U
Example: The space C[0,2] equipped with the L' norm is not complete.

Proof: Consider the following sequence of functions:

£ " for0<r<lI,
) =
" 1 forl<t<2.

This is a Cauchy sequence in the L! norm. Indeed for any n < m:

1 1 - 1
n+1 m+1 n+1’

1
an_meLl :/0 (ln—tm) dt =
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and consequently for any m,n > N

1

o= lls < -

Now let us show that f, do not converge to a continuous function in the L' norm.
Indeed, suppose such a limit exists and call it f. Then

1 2
an_fHL‘:/O It”—f(t)|dt+/1 11— f(t)|dt — 0.

Since
fO =1 <" = f@O) < [f ()] + 2"

implies that

/01 |f(t)|a’t—/01t"dt§/01 |t”—f(t)|dt§/01 |f(t)|dt+/01t"dt,

we have fol [t" — f(t)|dt — fol |f(z)|dt as n — o and consequently

1 2
/If(t)|dt+/ 11— f(1)|dt=0.
0 1

As f is assumed to be continuous, it follows

f(t):{ (1), 0<t<1,

L 1<t<2.

We see that the limit function f cannot be continuous. This contradiction implies that
C[0,2] is not complete with respect to the L! norm.

4.2 The completion of a normed space

A normed space may be incomplete. However, every normed space X can be con-
sidered as a subset of a larger Banach space X. The minimal among these spaceﬂ is
called the completion of X.

Informally we can say that X consists of limit points of all Cauchy sequences in X.
Of course, every point x € X is a limit point of the constant sequence (x;,, = x for all
n € N) and therefore X C X. If X is not complete, some of the limit points are not in
X, so X is larger then the original set X.

Definition 4.5 (dense set) We say that a subset X C V is dense in V if for any v €V
and any € > 0 there is x € X such that ||x —v|| < €.

3In this context “minimal” means that if any other space X has the same property, then the minimal
X is isometric to a subspace of X. It turns out that this property can be achieved by requiring X to be
dense in X.

20



Note that X is dense in V' iff for every point v € V there is a sequence x, € X such
that x,, — v.

Theorem 4.6 Let (X,| - ||x) be a normed space. Then there is a complete normed
space (27, || |l2) and a linear map i : X — 2 such that i is an isometrical isomor-
phism between (X, || - ||x) and (i(X), || - || 2°), and i(X) is dense in Z.

Moreover, X is unique up to isometry, i.e., if there is another complete normed
space (Z ||| g ) with these properties, then 2~ and 4 are isometrically isomorphic.

Proof: The proof is relatively long so we break it into a sequence of steps.
Construction of 2. Let % be the set of all Cauchy sequences in X. We say that two
Cauchy sequences X = (x,)5_;, X, € X, and 'y = (yn);_;» Yn € X, are equivalent, and
write X ~ y, if

n=1>

lim ||x, —yu||[x =0.
n— o0

Let 2 be the space of all equivalence classes in %/, i.e., it is the factor space: 2" =
% | ~. The elements of 2" are collections of equivalent Cauchy sequences from X.
We will use [x] to denote the equivalence class of x.

Exercises: Show that 2 is a vector space.

Norm on 2". For an n € 2 take any representative X = (x,)~_;, x, € X, of the
equivalence class 1. Then the equation

2 = lim [|lxalx - (4.1
defines a norm on 2. Indeed:

1. Equation (4.1)) defines a function 2" — R, i.e., for any n € 2" and any repre-
sentative x € 7 the limit exists and is independent from the choice of the repre-
sentative. (Exercise)

2. The function defined by (4.1)) satisfies the axioms of norm. (Exercise)
Definition of i : X — 2. For any x € X let

i(x) = [(x,x,x,x,...)]

(the equivalence class of the constant sequence). Obviously, i is a linear isometry,
and it is a bijection X — i(X). Therefore the spaces X and i(X) are isometrically
isomorphic.

[}

Completeness of 2. Let (n(k)) be a Cauchy sequence in (£, || - || 2-). For every

k € N take a representative x¥) € n(k). Note that x¥) € & is a Cauchy sequence in the

space (X, | - ||x). Then there is a strictly monotone sequence of integers n; such that
k) (k 1 :
Hxﬁ.)—)é )ng% forall j,1> ny. 4.2)
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Now consider the sequence x* defined by

X = (x’g’?>::1 '

Next we will check that x* is Cauchy, and consider its equivalence class n* = [x*] €
2 . Then we will prove that n®) — n*in (27, || -||.2°).

The sequence x* is Cauchy. Since the sequence of n(k) is Cauchy, for any € > 0 there
1s M, such that

lim [x —xPx = [n® —nO|, <& forallk,l > M.
n—oo

Consequently, for every k,/ > M, there is Ng ! such that

Ik —xPy <& foralln> N (4.3)

Then fix any € > 0. If j, [ > % and m > max{nj,nl,Nﬁ’/g} we have
(1)

I —xflx = [ x|k

i j j ) [ [
< D = e 1 — D+ 1 — D1
1 € 1

—+-+-<e
it3t

where we used (4.3)) and (4.2)). Therefore x* is Cauchy and n = [x*] € 2.
The sequence n(k) — [x*]. Indeed, take any € > 0 and k > 3¢~!, then

In® =l = tim [ x5 lx = tim [ — <71
J—oo J—0°

A\

< tim () ol o+ 1) =7 )
< ! +€<2¢
B

Therefore n®) — n*,

We have proved that any Cauchy sequence in 2" has a limit in 2", so 2" is com-
plete.

Density of i(X) in .2". Take an 1 € 2 and let x € 7). Take any € > 0. Since X is
Cauchy, there is N such that ||x,, —xi||x < € for all k,m > Ng. Then

In = iG]l 2 = lim Joo, —xellx <e.

Therefore i(X) is dense in 2.

Uniqueness of 2" up to isometry. I will not show you the details of the proof. The
proof uses the fact that i(X) is isometrically isomorphic to 7(X) (since each one is
isometrically isomorphic to X). Moreover, i(X) is dense in 2" and i(X) is dense in
4 . In order to complete the proof one has to show that an isometry between two
dense subsets can be extended to an isometry between the sets. 0
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4.3 Examples

The theorem provides an explicit construction for the completion of a normed space.
Often this description is not sufficiently convenient and a more direct description is
desirable.

1. Example: Consider the space P[0, 1] of all polynomial functions restricted to
the interval [0, 1] and equip this space with the sup norm. This space is not com-
plete. On the other hand any polynomial is continuous, and therefore P[0, 1]
can be considered as a subspace of C[0, 1] which is complete. The Weierstrass
approximation theorem states that any continuous function on [0, 1] can be uni-
formly approximated by polynomials. In other words, the polynomials are dense
in C[0, 1]. Then Theorem 4.6|implies that the completion of P[0, 1] is isometri-
cally isomorphic to C|[0, 1] equipped with the sup norm.

2. Example: Let {4(K) be the space of all sequences which have only a finite
number of non-zero elements. This space is not complete in the /¥ norm. The
completion of /¢(K) in the ¢” norm is isometric to /7 (K).

Indeed, we have already seen that ¢”(KK) is complete. So in order to prove the
claim you only need to check that £(K) is dense in 7 (K).

We see that the completion of a space depends both on the space and on the
norm.
3. Example: L'(0,1) is the completion of C[0, 1] in the L' norm.

According to this definition any f € L'(0,1) is an equivalence class of a Cauchy
sequence f, € C[0,1] equipped with the L! norm. The norm of f is defined by

1
I7llr = Jim all = Lim [ 17u(0)] .

In spite of the fact that f can be considered as a limit of the sequence of continu-
ous functions f;, in the L' norm, we cannot define the value of f(¢) for a given ¢
as the limit of f,(), because the limit may not exist or may depend on the choice
of the representative in the equivalence class.

In spite of that we can define the integral of f by setting

/lf(t)dt = lim lfn(t)dﬁ (4.4)
0 n—oeo J(

Indeed, the limit exists: the sequence of the integrals is Cauchy as

\ [ hoar— [ puteya

_ ‘ [ (0~ gt a

1

< V() = Im(@) dt = [fa = fmllLr
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hence convergent. It is not difficult to check that the limit does not depend from
the choice of a representative in the equivalence class f.

Obviously, if f, is a constant sequence, i.e., f,(t) = fo(t), t € [0,1], forall n €
N, then [y f(t) = fol fo(t)dt. Therefore this definition can be considered as an
extension of the classical Riemann’s integral used for continuous functions.

Taking into account the new definition of the integral we can write

1
7l = [ 176,

Then we recall that the norm is non-degenerate, therefore f = g for f,g €
L'(0,1) if and only if || f —g||;1 =0, i.e.,

[ 150 -1 =o,

where the integral should be interpreted in the sense of the new definition. Note
that f and g are not continuous and consequently the equality above cannot be
used to deduce that f(r) = g(¢) for all ¢.

Nevertheless a more direct description of L' (0, 1) is possible: The space L' (0,1)
is isometrically isomorphic to the space of equivalence classes of Lebesgue in-
tegrable functions on (0, 1): the functions f and g are equivalent if

[ 1701 =o.

Here the integral should be considered as the Lebesgue integral. We note that it
coincides with the definition provided above but its construction is more direct.
Since the notion of the Lebesgue integration is very important for the functional
analysis and its applications we will discuss it in more details in the next few
lectures. A more detailed study of this topics is a part of MA359 Measure Theory
module.
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S Lebesgue spaces

The exposition of the Lebesgue integral is based on the book H.A.Priesly, Introduction
to integration, Oxford Sc.Publ., 1997, 306 p.

5.1 Integrable functions

Integrals of step functions

We say that ¢ : R — R is a step function if it is piecewise constant on a finite number
of intervals, i.e., it can be represented as a finite sum

o) = i,lcj)a, (x).

where ¢; € R, I; C R is an interval, I; N[, = 0 if k # j, and y; is the characteristic

function of I:
1, xel,
XI(X)Z{ 0, x¢&1.
We note that the intervals are allowed to be of any of the four possible types (e.g.
(a,b), [a,b), (a,D] or [a,b)).
We define the integral of a step function ¢ by

/<P =Y ¢jljl,
=1

where |I;| is the length of /;. We note that this sum equals to the Riemann integral
which you studied in Year 1, i.e., [ ¢ is the “algebraic” area under the graph of the
step function ¢ (the area is counted negative on those intervals where ¢(x) < 0).

Sets of measure zero

Definition 5.1 We say that a set A C R has measure zero if for any € > 0 there is an
(at most countable) collection of intervals that cover A and whose total length is less
than €:

[}

AC U[aj,bj] and Z(bj—aj)<8.
j=1 j=1

Exercise: Show that a countable union of measure zero sets has measure zero. Hint:
for A, choose a cover with g, = £/2".

Examples. The set Q of all rational numbers has measure zero. The Cantor set has
measure Zero.

Definition 5.2 A property is said to hold “almost everywhere” or “for almost every
x” (and abbreviated to “a.e.”) if the set of points at which the property does not hold
has measure zero.
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Almost everywhere convergence

Theorem 5.3 Let (¢,(x))5_, be an increasing sequence of step functions (Qp1(x) >
©n(x) for all x) such that [ @, < K. Then @,(x) converges for a.e. x.

Proof: First note that an increasing sequence of numbers has a limit if and only if it is
bounded from above. So in order to prove the theorem it is sufficient to show that the
set

E={xeR:@y(x) = Foo}
has measure zero.
Without loosing in generality, we can assume that @, (x) > Oﬁ Let us define the set
Epm={x:0y(x)>m}.
This set is a finite union of intervals. Indeed, @,(x) =Y ; c(].") X, (x) is a step function.
T

Let Zpm=1{J: c&n) > m}. Then

En= U 1.
jeyn,m

The total length of those intervals is less than K /m. Indeed, since cﬁ") > 0 for all j and
c§.n) > nfor j € .7,

K>/<pn:Zc§.”)ylj(.”)|>m Y .
J

jejn,m

Finally, E C E,, = U, E1,» for every m. Since the sequence ¢, is increasing, E, ,, C
Ey11,m- Moreover E, 11 », \ Ey n consists of a finite number of intervals. Then

En=\JEim\E—1m
=1

is at most countable union of intervals (we denote Ey ,, = 0). Since E,, ,, = Uj—; E1m \
E;_ » and the total length of the intervals in E, ,, is less than K /m for all n, the total
length of the intervals in E,, is not larger than K /m.

Since E,, is at most countable union of intervals whose total length is less than
K/m and E C E,, for all m, the set E has measure zero. O

5Otherwise replace ¢, by @, — @; which is non-negative. The new sequence satisfies the assumption
of the theorem (possibly with a different constant K). Moreover, the convergence of @,(x) — @;(x) is
equivalent to the convergence of @, (x).
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Lemma 5.4 If ¢, and y,, are two increasing sequences of step functions which respec-
tively tend to f and g a.e. and f(x) > g(x) a.e., then

fim [0, im [
Proof: The following sets
Er = {x:limeu() # f(x) |,
By = {x:limyi (@) #g(x) |,
B = {xif(x) <g)}

have measure zero. Let E = E{ UE, UE3. Assume x € E.
Fix arbitrary k € N. The sequence W (x) — ¢, (x) is decreasing in n. Then as n — oo

Vi(X) = @alx) = Wi (x) — f(x) < g(x) = f(x) <0.

Consequently
(Wi — @n) " (x) = max{ yi(x) — @u(x), 0} — 0

Since it is a decreasing sequence of non-negative step functions which converges to 0

a.e.
Jw—on —0.

Since y; and ¢, are step functions

/wk—/%:/(wk—rpn)s/(w—w)*-

Then taking the limit as n — oo we get
Jw<iin [ o
n—oo
Finally, take the limit as k — oo to obtain the desired inequality. 0

Corollary 5.5 If ¢, and vy, are two increasing sequences of step functions which tend
to a function f a.e., then

lim/gon = lim/wn.

n—oo n—oo

Proof: Use the previous lemma with g = f.

"This statement is provided without a proof.
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Lebesgue integrable functions

Definition 5.6 If a function f : R — R can be represented as an a.e. limit of an in-
creasing sequence of step functions @, then the integral of f is given by

/ f=1im [ @,.
n—oo
If the limit is finite we write f € L™ (R).

Note that the limit is independent of the choice of the increasing sequence of step
functions.

Unfortunately L"(IR) is not a vector space as f € L"™(R) does not imply —f €
L"(R). Indeed, f is bounded from below by ¢; but not necessarily bounded from
above. Then — f is not bounded from below and therefore — f ¢ LI"*(R). For example,

;7 X%O, >
flx)= { 6/m =0 or le;lkl/ZX[(k—i—l)l,kl}'

Definition 5.7 (Lebesgue integral) A function f: R — R is (Lebesgue) integrable if
f=g—hwhere g,h € L'™(R) and

1o

This integral is called the Lebesgue integral.

Of course in the definition the choice of g and 4 is not unique. So we will have to
check that the value of the integral does not depend from this freedom.

5.2 Properties of Lebesgue integrals

The properties of the Lebesgue integral are based on the properties of the integrals for
the functions from L™ (R) .

Proposition 5.8 If f,g € L"™(R) and A € R, A > 0, then
I. f+g Af, max{f,g}, min{f,g}eL™R).

2. J(f+e)=Jf+]e.
3. If additionally f(x) > g(x) a.e., then [ f> [g.

8This construction is different (but equivalent) to the original definition of the Lebesgue integral.
For an alternative approach see Measure Theory module.
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Exercise: Prove the proposition.

First we state the main elementary properties of the Lebesgue integration.

Theorem 5.9 If f, f1, f> are integrable and A € R, then
1. fi+Af is also integrable and [(fi+Af2) = [fi+A [ fa.
2. |f(x)] is also integrable and | [ f| < [ |f].
3. Ifadditionally f(x) >0 a.e., then [ f > 0.

Proof:

1. Since f1, f> are integrable, there are functions g1,82,h1,h2 € Li"®(R) such that
fi=gk— M, k=1,2.1f A >0then g; +Agy,h; +Ahy € LIHC(R) and

/(fl +f) = /(g1 +/"tgz)—/(h1 +Ahy)

_ /g1+k/g2—/h1—7t/h2=/f1+7t/f2-

The case of A < 0 can be reduced to the previous one. Indeed, in this case
we can write f1 +Af, = fi + (—A)(—f2) and observe that — f, = hy — g and
consequently is also integrable. Linearity is proved.

2. Since f is integrable, f = g — h with g,h € L™ (R). Obviously for every x
|f (x)| = max{g(x),h(x) } —min{g(x),h(x)},

then Proposition [5.8] implies that the maximum and the minimum belong to
L'™°(R) and hence |f| is integrable. The inequality

g(x) +min{g(x), h(x) } <h(x)+max{g(x),h(x)}

is valid for every x and in combination with Proposition [5.8| implies

/g+/min{g,h} §/h+/max{g,h}.
Consequently

[1=[s= [ [max{gn}~ [mine.n} = [171.

Applying this result for f replaced by — f we conclude

~[r=[en<[1-0=[1n
Consequently, | [ f| < [|f]-
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3. Since f(x) = g(x) — h(x) with g,h € L™(R) and f(x) > 0 a.e., we conclude
g(x) > h(x) a.e.. Then Proposition [5.8]implies that [ ¢ > [ h. Consequently

/f:/g—/hzo. 0

We note that | f| is integrable does not imply that f is integrableﬂ

Exercise: If f is integrable than f, = max{ f,0} and f_ = min{ f,0} are integrable.
(Hint: £ = (f+|f])/2and £ = (f = |£])/2)

Integrals and limits

You should be careful when swapping lim and |

Examples:

ey =1 # / AL (5,1 =0

n

. 1 .1
lim _X(Om) =1 7é / lim _X(O,n) =0.
n—oo n n—oon

The following two theorems establish conditions which allow swapping the limit
and integration. They play the fundamental role in the theory of Lebesgue integrals.

Theorem 5.10 (Monotone Convergence Theorem) Suppose that f, are integrable,
fn(x) < fur1(x) a.e., and [ f, < K for some constant independent of n. Then there is
an integrable function g such that f,(x) — g(x) a.e. and

fa=jim [ 50
Corollary 5.11 If f is integrable and [ |f| =0, then f(x) =0 a.e.

Proof: Let f,(x) = n|f(x)|. This sequence satisfies MCT (integrable, increasing and
[ fn =0 < 1), consequently there is an integrable g(x) such that f,(x) — g(x) for a.e.
x. Since the sequence is increasing, f,(x) < g(x) a.e. which implies |f(x)| < g(x)/n
for all n and a.e. x. Consequently f(x) =0 a.e. O

Theorem 5.12 (Dominated Convergence Theorem) Suppose that f, are integrable
functions and f,(x) — f(x) for a.e. x.. If there is an integrable function g such that
|fu(x)] < g(x) for every n and a.e. x, then f is integrable and

/f:lim f

n—oo

°Indeed, we can sketch an example. It is based on partitioning the interval [0, 1] into two very nasty
subsets. So let f(x) = 0 outside [0,1], for x € [0,1] let f(x) = 1 if x belongs to the Vitali set and
f(x) = —1 otherwise. Then |f| = x[o,) but f is not integrable.
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It is also possible to integrate complex valued functions: f: R — C is integrable if
its real and imaginary parts are both integrable, and

/f::/Ref+i/Imf.

The MCT has no meaning for complex valued functions. The DCT is valid without
modifications (and indeed follows easily from the real version).

5.3 Lebesgue space L' (R)

Definition 5.13 The Lebesgue space L' (R) is the space of integrable functions modulo
the following equivalence relation: f ~ g iff f(x) = g(x) a.e. The Lebesgue space is

equipped with the L' norm:
£l = [171

It is convenient to think about elements of L!(R) as functions R — R interpreting
the equality f = g as f(x) = g(x) a.e.

From the viewpoint of Functional Analysis, the equivalence relation is introduced
to ensure non-degeneracy of the L! norm. Indeed, in the space of integrable functions
[1f] = 0is equivalent to f(x) = 0 a.e. and therefore does not imply the latter equality
for all x.

Theorem 5.14 L'(R) is a Banach space.

Revise the properties of the Lebesgue integral which imply that L' (R) is a normed
space. The completeness of L' (R) follows from the combination of the following two
statements: The first lemma gives a criterion for completeness of a normed space,
and the second one implies that the assumptions of the first lemma are satisfied for
X =L'(R).

Lemma 5.15 If (X,|| - ||x) is a normed space in which

Y yjllx < e
j=1

implies the series 23'0:1 yj converges, then X is complete.

Proof: Let x; € X be a Cauchy sequence. Then there is a monotone increasing se-
quence n; € N such that for every k € N

I —x|[x <27% for all k,l > ny.
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Let y; = X, and yg = X, — Xp,_, for k > 2. Since ||yi||x < 2'7* for k > 2,

Y Ivkllx < yillx + Y 21 = [y llx +2 < eo.
(=1 i=1

Consequently there is x* € X such that

x'= Zyj.
Jj=1

On the other hand ) )
Z Yj=%n + Z (x”j _‘xnjfl) = Xny
j=1 j=2
and therefore x,,, — x*. Consequently x; — x* and the space X is complete. 0

Lemma 5.16 If (fi)7_, is a sequence of integrable functions such that Y. || fill 1 <
oo, then

1. Y2 |fu(x)| converges a.e. to an integrable function,
2. Yr | fr(x) converges a.e. to an integrable function.

Proof: The first statement follows from MCT applied to the sequence g, = Y./, | fx|
and K = Y7 || fillz1- So there is an integrable function g(x) such that

s =Y 1)
k=1

for almost all x. For these values of x the partial sums A, (x) = Y.}_, fi(x) obviously
converge, so let

W =Y filw).
k=1

Moreover
n n oo
()] =} fi)| < X1l < P 10| = g(x).
k=1 k=1 k=1
Therefore the partial sums £, satisfy DCT and the second statement follows. U

In addition to L' (R) we will sometimes consider the Lebesgue spaces L!(I) where
I is an interval. We say that f € L'(I) if y;f € L'(R), i.e., we extend the function by
zero outside its original domain.

Proposition 5.17 The space C[0,1] is dense in L' (0, 1).

Proof- First show that step functions are dense in L! (0,1). Then check that every step
function can be approximated by a piecewise linear continuous function. U

Consequently the space we constructed in this section is isometrically isomorphic
to the completion of C[0, 1] in the L! norm.
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5.4 L? spaces

Another important class of Lebesgue spaces consists of L” spaces for 1 < p < oo,
among those the L? space is the most remarkable (it is also a Hilbert space, see the
next chapter for details). In this section we will sketch the main definitions of those
spaces noting that the full discussion requires more knowledge of Measure Theory
than we can fit into this module).

If I = (a,b) is an interval, then LP(I) can be defined in terms of the integration
procedure developed earlier in this chapter. This definition is equivalent to the standard
one which will be given a bit later.

The Lebesgue space L”(I) is the space of all integrable functions such that

1715 = [ 1117 <o

modulo the equivalence relation: f = g iff f(x) = g(x) a.e. We note that in this case
LP(I) C L'(I). The definition of L”(R) is slightly different. We say that f € L (R) if f
is locally integrable (i.e., f € L'(I) for any interval I)'"|and its p power is integrable.
The norm is defined by the same formula:

1715, = [ 1717 <.

We note that although L' (R) NL*(R) # 0 (e.g. both spaces contain all step functions)
none of those spaces is a subset of the other one. For example, f(x) = 1/(1+ |x|)
belongs to L?(R) but not to L' (R). Indeed, [ f? < oo but [ f = oo s0 it is not integrable
on R. On the other hand )
XX
g(‘x) - ‘X‘ 1/2

belongs to L' (R) but not to L?(R).

Theorem 5.18 L7(R) and LP(I) are Banach spaces for p > 1 and any interval I.

We will not give a complete proof but sketch the main ideas instead.
Let %+é = 1land f € LP(R), g € LY(R). Then the Holder inequality stateﬁ that

1781 <171l

10This is an important requirement. It is not sufficient to define L” as a set of all functions such
that f7 is integrable: this space would not be a vector space. Indeed, let p =2, g = x|, and f be
the non-integrable function from the footnotdd, Then fP=g"= Xo,1) 1s integrable. But (f+g)?=
f2+2fg+g>=2+2f is not integrable. Therefore if we followed this definition f,g € L?> would not
imply f+g € L*.

""We will not discuss the proof of this inequality in these lectures.
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Note that the characteristic function y; € L(RR) for any interval / and any g > 1, more-

1
over ||xrl|ze = |I|* where |I| = b— a is the length of I. The Holder inequality with
g = X1 implies that

[alsi= [11< 011,

The left hand side of this inequality is the norm of f in L' (1):

Ny < Y9 f Nl -

Consequently any Cauchy sequence in L”(I) is automatically a Cauchy sequence in
L'(I). Since L' is complete the Cauchy sequence converges to a limit in L'(I) (and
consequently converges a.e.). In order to proof completeness of L? it is sufficient to
show that the pM power of this limit is integrable. This can be done on the basis of the
Dominated Convergence Theorem.

Exercise: The next two exercises show that L?(RR) is complete (compare with the proof
of completeness for L' (R)).

1. Let (fi)7_, be a sequence in L?(R) such that

Y Ifillz < oo
k=1

Applying the MCT to the sequence

8n = (ké fk>2

show that ¥ fi converges to a function f with integrable f.

2. Now use the DCT applied to h,, = ‘ f—Xi fk‘z to deduce that } ; f; converges
in the L? norm to a function in L.

O

If you look into a textbook, you will probably see a differently looking definition
of the Lebesgue spaces. Traditionally a function f is asked to be measurable instead
of locally integrable. Local integrability is a stronger property: every locally inte-
grable function is measurable but there are measurable functions which are not locally
integrable, e.g. x~2 is measurable but not locally integrable since f_ll x72 = 4-o0. Nev-
ertheless the two alternative definitions of the Lebesgue space are equivalent.

Let us discuss the notion of a measurable function from the perspective of our
definitions.
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First we need to define the measure, which can be considered as a generalisation
of the length of an interval. We say that a subset A C R has finite Lebesgue measure
1 (A) if the characteristic function ), is Lebesgue integrable. Then

U(A) = /xA >0.

Obviously ut([a,b]) = b — a for an interval [a,b] and consequently its Lebesgue mea-
sure coincides with the length.

In order to study large sets (like R) we need to extend this definition to allow
measuring sets with infinitely large measures. We say that A C R is measurable if 4
is locally integrable. In particular, if A is measurable then A, = A N [—n,n] has finite
measure for each n. Since ((A,) is an increasing sequence the following limit exists
(but can be +o0)

HA) = lim p(4,) < 4o

Note that if [ x4 < e MCT implies that the limit coincides with the previous definition

of u(A).
For example R is measurable and p(R) = +oo.

Definition 5.19 A function f : R — R is measurable if preimage of any interval is
measurable.

We note that sums, products and pointwise limits of measurable functions are mea-
surable.

Consider the set of all measurable functions from R to R (or C) whose absolute
value raised to the p™ power has a finite Lebesgue integral, i.e.,

1/p
£l = f157) " <=

This space modulo the equivalence relation “f = g iff f(x) = g(x) a.e.” is called the
Lebesgue space LP(R).
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6 Hilbert spaces
6.1 Inner product spaces
You have already seen the inner product on R”.

Definition 6.1 An inner product on a vector space V is amap (-,-) : V. xV — K such
that for all x,y,z € V and for all A € K:

(i) (x,x) >0, and (x,x) =0 iff x = 0;
(ii) (x+y,2) = (x,2)+ (3,2);

(iii) (Ax,y) = A(x,y);

(iv) (x,y) = (y,%).

A vector space equipped with an inner product is called an inner product space.

e In a real vector space the complex conjugate in (iv) is not necessary.

e If K = C, then (iv) with y = x implies that (x,x) is real and therefore the require-
ment (x,x) > 0 make sense.

e (iii) and (iv) imply that (x,Ay) = A (x.y).

1. Example: R” is an inner product space
n
x,y) = Z XYk -
k=1
2. Example: C" is an inner product space
n
y) = Z Xk Yk -
k=1
3. Example: />(K) is an inner product space
y) =Y x5
k=1

Note that the sum converges because ¥y [xeve| < 5 X (xk|* + |ye]?)-

4. Example: L?(a,b) is an inner product space

9= [ e
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6.2 Natural norms

Every inner product space is a normed space as well.

Proposition 6.2 IfV is an inner product space, then
vl = v/ (v,v)

defines anormon'V.

Definition 6.3 We say that ||x|| = /(x,x) is the natural norm induced by the inner
product.

Lemma 6.4 (Cauchy-Schwartz inequality) IfV is an inner product space and ||v|| =

V(v,v) forall v €V, then

(o) < lxllliyll forallx,yeV.

Proof of the lemma: The inequality is obvious if y = 0. So suppose that y # 0. Then
for any A € K:

0< (X_A‘yrx_ﬂ‘y) - (X,)C) - A«(y,)() —I(X,y) + |)’|2(yay> :
Then substitute 2 = (x,y)/||y||*:

[Con| @] e [G6))]
>+ oo = Il 7
[yl Yl Iyl

which implies the desired inequality. 0

0 < (x,x)—2

Proof of the proposition: Now we can complete the proof of Proposition [6.2] We note
that positive definiteness and homogeneity of || - || easily follow from (i), and (iii), (iv)
in the definition of the inner product. In order to establish the triangle inequality we
use the Cauchy-Schwartz inequality. Let x,y € V. Then

Ix+y* = (x+yx+y)=(xx)+xy)+3.x) +0,y)
< lxlP 20 I+ P = el =+ DD,

and the triangle inequality follows by taking the square root.
Therefore || - || is a norm. O

We have already proved the Cauchy-Schwartz inequality for £2(K) using a different
strategy (see Lemma [2.4).

The Cauchy-Schwartz inequality in L?(a, b) takes the form

< ([1rwpa) " ([ lstopar)

In particular, it states that f,g € L?(a,b) implies fg € L'(a,b).

1/2

[ 1oty
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Lemma 6.5 IfV is an inner product space equipped with the natural norm, then x,, —
x and y, — y imply that
(xmyn) - (x7y) .

Proof: Since any convergent sequence is bounded, the inequality

|(Xns0n) — (6, 0)] = (o —2x,9m) + (X, 50 — )|
< o —x,30) |+ (30 — )|
< e = x[H[yall + [ {[yn =yl

implies that (x,,y,) — (x,y). O

The lemma implies that we can swap inner products and limits.

6.3 Parallelogram law and polarisation identity

Natural norms have some special properties.

Lemma 6.6 (Parallelogram law) IfV is an inner product space with the natural norm
|- ||, then

eyl e =yl =2(Ixl> + IyI?) ~ forallx,yeV.
Proof: The linearity of the inner product implies that for any x,y € V

Ix+yP+x=yI> = (x+yx+y)+@Ex—yx—y)
= (%,x) + (,y) + (0,x) + (1Y)
+(x,x) — (x,5) = (%) + (1Y)

= 2(|x|I>+ lIyl1*) O

Example (some norms are not induced by an inner product): There is no inner
product which induces the following norms on CJ[0, 1]:

1
Hﬂ%ISWHﬂM or WWUZA\ﬂMW-

tel0,1

Indeed, these norms do not satisfy the parallelogram law, e.g., take f(x) =x and g(x) =
1 —x, obviously f,g € C[0,1] and

[flleo =18l = Ilf = 8llo = llf +&llo =1,

substituting these numbers into the parallelogram law we see 2 # 4.
Exercise: Is the parallelogram law for the L! norm satisfied for these f,g?
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Lemma 6.7 (Polarisation identity) LetV be an inner product space with the natural
norm || - ||. Then

1. IfV is real
2.

4(x,y) = [+ yl* = [le =yl
2. IfV is complex
4(x,y) = [+ ylI> = e = Y117 + illc+ iyl|* = il lx —iy]|*

Proof: Plug in the definition of the natural norm into the right hand side and use
linearity of the inner product. U

Lemma shows that the inner product can be restored from its natural norm.
Although the right hand sides of the polarisation identities is meaningful for any norm,
we should not rush to the conclusion that any normed space is automatically an inner
product space. Indeed, the example above implies that for some norms these formulae
cannot define an inner product. Nevertheless, if the norm satisfy the parallelogram law,
we indeed get an inner product:

Proposition 6.8 Let V be a real normed space with the norm || - || satisfying the par-
allelogram law, then

B [ | 2 et 1

defines an inner product on V.H

Proof: Let us check that (x,y) satisfy the axioms of inner product. Positivity and
symmetry are straightforward (Exercise). The linearity:

4xy) +4zy) = [yl ==y P+ llz v =z =yl
= g2y 2>+ llx—2l?) = 3 (e =2y + 2> + x —2]?)
Mx+2y+2z)* = Llx—2y+2)
= Q2lx+y+zlP + 20y — le+z]?)
=3l —y+zl +20yl* = e +2?)
= |x4y+z|P—|lx—y+z/|> =4(x+zy).
We have proved that
(x,3)+ (z,y) = (x+2,).
Applying this identity several times and setting z = x/m we obtain

n(x/m,y) = (nx/m,y)  and  m(x/m,y) = (x,y)

12Can you find a simpler proof?
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for any m € Z and n € N. Consequently, for any rational A = ;-

(Ax,y) = A(x,).

We note that the right hand side of the definition involves the norms only, which com-
mute with the limits. Any real number is a limit of rational numbers and therefore the
linearity holds for all A € R. O

6.4 Hilbert spaces: Definition and examples

Definition 6.9 A Hilbert space is a complete inner product space (equipped with the
natural norm).

Of course, any Hilbert space is a Banach space.

1. Example: R" is a Hilbert space

1/2

. " 1/2
(xy) =Y u¥ il = (Z |xk|2> :
k=1 k=1

n
(5y) =Y xks Xl = (
k=1

=~
™=
0

2. Example: C" is a Hilbert space

3. Example: />(K) is a Hilbert space

. N 1/2
(y) =Y v Ikl = (Z |xk|2> :
k=1 k=1
4. Example: L?(a,b) is a Hilbert space

o= [ s = ( [1rwpa)”
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7 Orthonormal bases in Hilbert spaces

The goal of this section is to discuss properties of orthonormal bases in a Hilbert space
H. Unlike Hamel bases, the orthonormal ones involve a countable number of elements:
i.e. a vector x is represented in the form of an infinite sum

X = i Oey
k=1

for some oy € K.

We will mainly consider complex spaces with K = C. The real case K = R is not
very different. We will use (-,-) to denote an inner product on H, and | - || will stand
for the natural norm induced by the inner product.

7.1 Orthonormal sets

Definition 7.1 Two vectors x,y € H are called orthogonal if (x,y) = 0. Then we write
x Ly

Theorem 7.2 (Pythagoras theorem) If x Ly then ||x+y||> = ||x||* + ||y||*.
Proof: Since (x,y) =0
e+ yII> = (e y,x+¥) = (6,0) + (6,9) + (052) + () = [l + 1] O

Definition 7.3 A set E is orthonormal if |le|| = 1 for all e € E and (e},ez) = 0 for all
e1,er € E such that e; # e .

Note that this definition does not require the set £ to be countable.
Exercise: Any orthonormal set is linearly independent.

Indeed, suppose Y7, axex = 0 with ¢, € E and oy € K. Multiplying this equality
by e; we get

n n
0= (Z (xkek7ej> = Z Otk(ek,ej) = 0.
k=1

k=1

Since o; = 0 for all j, we conclude that the set E is linearly independent.

Definition 7.4 (Kronecker delta) The Kronecker delta is the function defined by

& — 17 lf]:k7
K0, ifj#k.
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Example: For every j € N, let e; = (8j;);>_, (it is an infinite sequence of zeros with 1
at the j position). The set E = {e;: j € N} is orthonormal in 2. Indeed, from the

definition of the scalar product in /> we see that (ej,ex) = Oj forall j,k € N.

Example: The setﬁ

eikx
E= = ke
{ Jr T }
is an orthonormal set in L?>(—7, 7). Indeed, since | f;(x)| = \/LzTr for all x:

17, = [ ) Pax=1,

and if j #k
d v d 1 4 i(k—j)xd ei(kij)x o 0
(hofi)= [ AT jdr= g [ M Pax= | =0,
X=—7
Lemma 7.5 If{e1,...,e,} is an orthonormal set in an inner product space V, then for

any oij € K

2
$ 2
=Y o
=1

n
Z ajej
j=1

Proof: The following computation is straightforward:

2
= (Z ojej, Z a1€1> = Z Z ajal(ejvel)

n
Z ajej
j=1

7.2 Gram-Schmidt orthonormalisation

Lemma 7.6 (Gram-Schmidt orthonormalisation) Let V be an inner product space
and (vi) be a sequence of linearly independent vectors in'V (finite or infinite). Then
there is an orthonormal sequence (ey) such that

Span{vy,...,vx } = Span{ey,...,e;} for all k.

I3Remember that for any x € R and any k € Z: e/ +ikr

coskr +isinkm = (—1)k,

= coskx +isinkx. Then |e**| =1 and e
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Proof: Let e; = . Then

Al

Span{v; } = Span{e; }

and the statement is true for n = 1 as the set E; = { e } is obviously orthonormal.

Then we continue inductively Suppose that for some k > 2 we have found an
orthonormal set E;_| = {ey,...,e;_1 } such that its span coincides with the span of
{vi,.--,vk_1 }. Then set

k—1
e =V — Z(vk,ej)ej.
j=1
Since ):k.;l vi,ej)ei € Span(E,_1) = Span{vy,...,vt_1} and vy,...,v; are linearly
j=1 J/%]
independent, we conclude that &, # 0. For every j < k
k—1
(Brrej) = (viser)) = Y (v, ej)(ej,er) = (vi,er) — (vi,er) =0
j=1

which implies that &, L e;. Finally let e, = é&;/||é||. Then {ey,...,e; } is an orthonor-
mal set such that

Span{ej,...,er } = Span{vy,..., v }.
If the original sequence is finite, the orthonormalisation procedure will stop after a
finite number of steps. Otherwise, we get an infinite sequence of ey. U

Corollary 7.7 Any infinite-dimensional inner product space contains a countable or-
thonormal sequence.

Corollary 7.8 Any finite-dimensional inner product space has an orthonormal basis.

Proposition 7.9 Any finite dimensional inner product space is isometric to C" (or R"
if the space is real) equipped with the standard inner product.

Proof: Let n =dimV and e;, j = 1,...,n be an orthonormal basis in V. Note that
(ex,ej) = O;j. Any two vectors x,y € V can be written as

n n
x:Zxkek and y:Zyjej.
k=1 j=1

Then
n n n n n
y) = Y xer, Y viei | =Y. Y xiyilersej) =) xiy-
k=1 =1 =1 j=1 k=1
Therefore the map x — (xi,...,x,) is an isometry. O

We see that an arbitrary inner product, when written in orthonormal coordinates,
takes the form of the “canonical” inner product on C" (or R" if the original space is
real).

!4For example, let k =2. We define & = v, — (v2,e1 )e;. Then (&2,¢1) = (v2,e1) — (v2,e1)(e1,e1) =0.

Since vy, v; are linearly independent &, # 0. So we can define e, = IIZZH .

43



7.3 Bessel’s inequality

Lemma 7.10 (Bessel’s inequality) IfV is an inner product space and E = (ex);>_, is
an orthonormal sequence, then for every x € V

S )2 2
Z x,e)|” < Jlx]”

Proof: We note that for any n € N:

i (x,ex)e = ( i (x,ex)ex,x — i(x,ek)ek>

k=1

n
2 2 2
=[xl —2Z!(x,ek)\ + ) |(x,e0)|
k=1
= Jad* - Z\xek

Since the left hand side is not negative,

- 2 2
Z xer)|” < x|

2

and the lemma follows by taking the limit as n — oo. U

Corollary 7.11 If E is an orthonormal set in an inner product space V, then for any
x €V the set

& ={e€E:(x,e)#0}

is at most countable.

Proof: For any m € N the set E,, = {e: |(x,e)| > n% } has a finite number of elements.
Otherwise there would be an infinite sequence (ex);>_, with e; € E,,, then the series
Y, |(x,ex)|> = +o0 which contradicts to Bessel’s inequality. Therefore & = U_E,
is a countable union of finite sets and hence at most countable. U

7.4 Convergence

In this section we will discuss convergence of series which involve elements from an
orthonormal set.

Lemma 7.12 Let H be a Hilbert space and E = (ey);_, an orthonormal sequence.
The series Y ;.| Okey converges iff Y1~ ]Ock\z < 400, Then

(o)

=Y Jouf. (7.1)

k=1

- 2
Z (0/95%
k=1
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Proof: Let x, = Y{_, oyey and B, = Yi_, |ox|>. Lemma [7.5implies that ||x,||* = B,
and that for any n > m

2

= Z |ak|2:ﬁn_ﬁm-

[|xn _meZ =

n
Z oey

k=m+1

Consequently, x, is a Cauchy sequence in H iff f3, is Cauchy in R. Since both spaces
are complete, the sequences converge or diverge simultaneously.

If they converge, we take the limit as n — oo in the equality ||x,||> = B, to get
(the limit commutes with || - ||?). O

Definition 7.13 A series ).,._, x, in a Banach space X is unconditionally convergent
if for every permutation © : N — N the series }.,” | X5(,) converges.

Every absolutely convergent series is unconditionally convergent, but the converse
implication does not hold in general. In R” a series is unconditionally convergent if
and only if it is absolutely convergent.

Lemma and Bessel’s inequality imply:

Corollary 7.14 If H is a Hilbert space and E = (ex);>_, is an orthonormal sequence,
then for every x € H the sequence

Z (.Xf, €k)€k
k=1

converges unconditionally.

Lemma 7.15 Let H be a Hilbert space, E = (ey);_, an orthonormal sequence and
x€H. Ifx=Y; | 0eg, then

o = (x,ex)  forallk e N.

Proof: Exercise. O

7.5 Orthonormal basis in a Hilbert space

Definition 7.16 A set E is a basis for H if every x € H can be written uniquely in the
form

X = i Oey
k=1

for some oy € K and e, € E. If additionally E is an orthonormal set, then E is an
orthonormal basis.
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If E is a basis, then it is a linearly independent set. Indeed, if }.} agzex = O then
= (0 due to the uniqueness.

Note that in this definition the uniqueness is a delicate point. Indeed, the sum
Y okey is defined as a limit of partial sums x, = Y7 | akex. A permutation of e
changes the partial sums and may lead to a different limit. In general, we cannot even
guarantee that after a permutation the series remains convergent.

If E is countable, we can assume that the sum involves all elements of the basis
(some oy, can be zero) and that the summation is taken following the order of a selected
enumeration of E. The situation is more difficult if £ is uncountable since in this case
there is no natural way of numbering the elements.

The situation is much simpler if E is orthonormal as in this case the series converge
unconditionally and the order of summations is not important.

Proposition 7.17 Let E = {e; : j € N} be an orthonormal set in a Hilbert space H.
Then the following statements are equivalent:

(a) E is a basis in H;

(b) x=Y;(x,ex)ex forallx € H;
(©) P =5 | e
(d) (x,e,) =0 forall n € N implies x =0;

’

(e) the linear span of E is dense in H.

Proof:

(a) <= (b): use Lemmal[7.15

(b)) = (c): use Lemma(7.12
(¢) = (d): Let (x,ex) = 0 for all k, then (c) implies that ||x|| = 0 hence x = 0.

(d) = (b): lety=x—Y7 ,(x,ex)er. Corollary implies that the series con-
verges. Then Lemma [6.5]implies we can swap the limit and the inner product to get
for every n

c

(v,en) = (—i(x,ek)ek,en>

k=1

= (x,e,) Z x,ex)(ex,en) = (x,en) — (x,e4) =0.

Since (y,e,) = 0 for all n, then (d) implies that y = 0 which is equivalent to x =
Yo (x,ex)ex as required.
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() = (d): since Span(E) is dense in H for any x € H there is a sequence x, €
Span(E) such that x, — x. Take x such that (x,e,) = 0 for all n. Then (x,,x) =0 and
consequently

|x||* = <lim xn,x> = lim (x,,x) = 0.
n—oo n—oo
Therefore x = 0.

(a) = (e): Since E is a basis any x = lim,_..x, with x, = ¥}, oxe) € Span(E).
0J

Example: The orthonormal sets from examples of Section [/.1| are also examples of
orthonormal bases.
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8 Closest points and approximations

8.1 Closest points in convex subsets

Definition 8.1 A subset A of a vector space V is convex if Ax+ (1 —A)y € A for any
two vectors x,y € V and any A € [0, 1].

Lemma 8.2 Let A be a non-empty closed convex subspace of a Hilbert space H and
x € H. Then there is a unique a* € A such that

|x —a*|| = inf [|[x —a| .
acA

Proof: The parallelogram rule implies:
e =) + (=) >+ [l = ) = (x =) > = 2| —ul >+ 2 — v

Then
2 2 2 2
lJu—v[|* =2[lx — ul” +2[|x — v||* = 4[x — 5 (u+v)|]*.

Let d = infyea ||x —al|. Since A is convex, 3(u+v) € A for any u,v € A, and conse-
quently [x— 3 (u+v)|| > d. Then

e —v||> < 2||x — u|® +2||x — v||> — 4d?. 8.1)

Since d is the infinum, for any » there is a, € A such that ||x — a,||> < d*> + % Then
equation (8.1) implies that

2 2 )
n—ap|| <2d*+ =424+ = —4d" ==+ =,

a 24> 2d? 44>
n m n m

Consequently (a,) is Cauchy and, since H is complete, it converges to some a*. Since
A is closed, a* € A. Then

oe—a*[]> = lim [lv—a, | = .

Therefore a* is the point closest to x. Now suppose that there is another point @ € A
such that ||x — d|| = d, then (8.1]) implies

|a* —al|| < 2|jx—a*||*+2||x —a|* — 4d> = 2d* + 2d* —4d*> = 0.

So @ = a* and a* is unique. O
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8.2 Orthogonal complements

In an infinite dimensional space a linear subspace does not need to be closed. For
example the space ¢ of all sequences with only a finite number of non-zero elements
is a linear subspace of ¢% but it not closed in % (e.g. consider the sequence x, =
(1,271,272,...,27",0,0,...)).

Definition 8.3 Let X C H. The orthogonal complement of X in H is the set
Xt ={uecH: (ux)=0forallxcX}.
Proposition 8.4 If X C H, then X is a closed linear subspace of H.
Proof: If u,v € X+ and a € K then
(u+ av,x) = (u,x) +a(v,x) =0

for all x € X. Therefore X' is a linear subspace. Now suppose that u, € X and
u, —uc H. Then forall x € X

(u,x) = (lim up,x) = lim (u,,x) =0.
n—oo

n=se0
Consequently, u € X and so X is closed. 0
Exercises:

1. If E is abasis in H, then E* = {0}.

2. IfY CX,then X+ C Y+,

3.XC(xhHt

4. If X is a closed linear subspace in H, then X = (X )=+

Definition 8.5 The closed linear span of E C H is a minimal closed set which contains
Span(E):

Span(E) = {u € H : Ve > 0 3x € Span(E) such that ||x —ul|| < €} .
Proposition 8.6 If E C H then E- = (Span(E))" = (Span(E))™ .

Proof: Since E C Span(E) C Span(E) we have (Span(E))* C (Span(E))* C E*. So
we need to prove the inverse inclusion. Take u € E+ and x € Span(E). Then there is
xn € Span(E) such that x,, — x. Then

(x,u) = (lim x,,u) = lim (x,,u) =0.

n—oo n—oo

Consequently, u € (Span(E))* and we proved E+ C (Span(E))*. O
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Theorem 8.7 If U is a closed linear subspace of a Hilbert space H then

1. any x € H can be written uniquely in the form x = u~+v withu € U and v € U™
2. uis the closest point to x in U.

3. The map Py : H — U defined by Pyx = u is linear and satisfies
Pix = Pyx and |Pu()|| < |||  forallxe H.

Definition 8.8 The map Py is called the orthogonal projector onto U.

Proof: Any linear subspace is obviously convex. Then Lemma [8.2] implies that there
is a unique u € U such that

|x —u|| = inf |[x —al|.
acU
Let v=x—u. Let us show that v € UL. Indeed, take any y € U and consider the
function A : C — R defined by
A(t) = [lv+y)* = lx — (u—1y)|1*.

Since the definition of u together with u —ty € U imply that A(¢) > A(0) = [|lx — ul|?,
the function A has a minimum at # = 0. On the other hand

Aty =v+oyl? = vy +ry)
= (W) +1Ov) 1Y) + P (30) -
First suppose that 7 is real. Then 7 = ¢ and %(O) = 0 implies
(»v)+(vy) =0.
Then suppose that ¢ is purely imaginary, Then f = —¢ and %(0) = 0 implies
<y7v) - (Vvy) =0.
Taking the sum of these two equalities we conclude
(y,v)=0 forevery y € U.
Therefore v € U+,

In order to prove the uniqueness of the representation suppose x = u; +v; =u-+v
withu,u €U and vy,v€ UL. Then u; —u=v—v;. Sinceu—u; €U andv—v; € U+,

[v—wi]> =@ —=vi,v—vi) = (v—vi,u; —u) =0.
Therefore u and v are unique.

Finally x = u+v with u L v implies ||x||? = ||u||> + ||v||>. Consequently ||Py (x)| =
|u|| < ||x||. We also note that Py (u) = u for any u € U. So P74 (x) = Py(x) as Py(x) €U
U

Corollary 8.9 If U is a closed linear subspace in a Hilbert space H and x € H, then
Py (x) is the closest point to x in U.
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8.3 Best approximations

Theorem 8.10 Let E be an orthonormal sequence: E = {e;: j€ 7} where ¢ is
either finite or countable set. Then for any x € H, the closest point to x in Span(E) is

given by
y=3 (xeje;.
jE€s

Corollary 8.11 If E is an orthonormal basis in a closed subspace U C H, then the
orthogonal projection onto U is given by

Py(x) = Z (x,ej)e;.
j€s

Proof: Corollary implies that u =} ;e » (x,ej)e; converges. Then obviously u €
Span(E) which is a closed linear subset. Let v =x—u. Since (v,ex) = (x,ex) — (u,ex) =
0 for all k € J, we conclude v € E+ = (Span(E))" (Lemma . Theoremimplies
that u is the closest point. U

Example: The best approximation of an element x € £ in terms of the elements of the
standard basis (e;)}_, is given by

n
Z x,ej)ej = (x1,X2,...,%,,0,0,...).

Example: Let (e j) | be an orthonormal basis in H. The best approximation of an
element x € H in terms of the first n elements of the orthonormal basis is given by

n
er]

Now suppose that the set E is not orthonormal. If the set E is finite or countable we
can use the Gram-Schmidt orthonormalisation procedure to construct an orthonormal
basis in Span(E). After that the theorem above gives us an explicit expression for the
best approximation. Let’s consider some examples.

Example: Find the best approximation of a function f € L?>(—1,1) with polynomials
of degree up to n. In other words, let £ = {l,x,xz,...,x”}. We need to find u €
Span(E) such that

— = inf — .
If iz = _inf = pll

The set E is not orthonormal. Let’s apply the Gram-Schmidt orthonormalisation pro-
cedure to construct an orthonormal basis in Span(E). For the sake of shortness, let’s
write |- || = [ - l2(-1,1)-
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First note that ||1]| = v/2 and let

1
e = —.
T2
Then (1,x) = [!,xdx =0and ||x||> = ', |x[*dx = 2 so let
3
ér = E)C.
Then
& = x° —x ezez—(x ey)e
3 1 1
:x—f/zftdt— /t
V2 -1 2
1
= — = t 2dt=x"— <.
X 2 . )C 3

Taking into account that

we obtain

Exercise: Show that e4 = \/g (5x% — 3x) is orthogonal to ey, e, and e3.

The best approximation of any function f € L?>(—1,1) by a polynomial of third
degree is given by

%(5x3—3x) / 11 f(t)(5t3—3t)dt+g(3x2—1) / 11 f(0)(3t* = 1)dt

3 1 1!
+§x/1tf(t)dt—|—§/1f(t)dt

For example, if f(x) = |x| its best approximation by a third degree polynomial is

15243
16

p3 =
We can check (after computing the corresponding integral);
3
_ 2 e —
If =Pl = =
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Note that the best approximation in the L? norm is not necessarily the best approx-
imation in the sup norm. Indeed, for example,

sup

15x2+3‘ 3
xe[—1,1]

16 16

x| —
(the supremum is larger than the values at x = 0). At the same time
1 1
J— 2 —_ = —,
|x| (x + 8) ‘ g

8.4 Weierstrass Approximation Theorem

sup
x€[—1,1]

In this section we will prove an approximation theorem which is independent from the
discussions of the previous lectures. This theorem implies that polynomials are dense
in the space of continuous functions on an interval.

Theorem 8.12 If f : [0, 1] — R is continuous on [0, 1] then the sequence of polynomials

n = 3 (1) to/mar -2
p=0 \P
uniformly converges to f on [0, 1].

Proof: The binomial theorem states that

= $, (e

Differentiating with respect to x and multiplying by x we get

x(x+y)" Zp( )xp P

Differentiating the original identity twice with respect to x and multiplying by x> we
get

n

n(n—1)x*(x+y)" 2=y p(p—1) <Z>xpy”“’-

Now substitute y = 1 — x and denote
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We get

p=0
Zprp(x) = nx
p=0
ZP(P—I)Vp(x) = n(n—l)x2

Consequently,
n

Y (p-nPrp) = Y P — 200y prp0) 4222 Y rplx)
p=0 p=0 p=0 p=0

= n(n—1)x>+nx—2(nx)* +n*x*> = nx(1 —x).

Let M = sup,[o 1) |f(x)|- Note that f is uniformly continuous, i.e., for every € >0
there is 6 > 0 such that

k—y[<é = f)-fO)l<e.

Now we can estimate
n

[f) =Ba(x)| = |f(x)= X fp/m)rp(x)

p=0

= Y (P — Fp/m) ()
p=0

< (f(x) = f(p/n))rp(x)
|x—p/n|<d
+H Y (F=fp/n)rpx)
lx—p/n|>6

The first sum is bounded by

(f(x) = f(p/n))rp(x)

x—p/n|<é

<e Y rx<e
|x—p/n|<0
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The second sum is bounded by

(f@)=flp/m)rp(x)| < 2M Y, rp(x)
lx—p/n|>8 |nx—p|>nd
& —nx)?
Z (pn262) rp(x)
p=0
2Mx(1 —x) _ 2M
né? = nd?

IN

which is less than € for any n > r%—ﬂfg. Therefore for these values of n

[f(x) = Pa(x)] < 2e.
Consequently,

sup |f(x) —B,(x)| =0 as n — oo, O
x€[0,1]

Corollary 8.13 The set of polynomials is dense in C|0, 1| equipped with the supremum
norm.
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9 Separable Hilbert spaces

9.1 Definition and examples

Definition 9.1 A normed space is separable if it contains a countable dense subset.

In other words, a space H is separable if there is a countable set {x, € H:n € N}
such that for any u € H and any € > 0 there is n € N such that

l|lx, —ul| < €.

Examples: R is separable (Q is dense). R” is separable (Q" is dense), C" is separable
(Q"4-iQ" is dense).

Example: (2 is separable. Indeed, the set of sequences (x1,x2,...,%,,0,0,0,...) with
x; € Q is dense and countable.

Example: The space C|0, 1] is separable. Indeed, the Weierstrass approximation the-
orem states that every continuous function can be approximated (in the sup norm) by
a polynomial. The dense countable set is given by polynomials with rational coeffi-
cients.

Example: L>(0,1) is separable. Indeed, continuous functions are dense in L>(0, 1)
(in the L?>-norm). The polynomials are dense in C[0, 1] (in the supremum norm and
therefore in the L? norm as well). The set of polynomials with rational coefficients is
dense in the set of all polynomials and, consequently, it is also dense in L2[0, 1] (in the
L? norm).

9.2 Isometry to />

If H is a Hilbert space, then its separability is equivalent to existence of a countable
orthonormal basis.

Proposition 9.2 An infinite-dimensional Hilbert space is separable iff it has a count-
able orthonormal basis.

Proof: 1f a Hilbert space has a countable basis, then we can construct a countable dense
set by taking finite linear combinations of the basis elements with rational coefficients.
Therefore the space is separable.

If H is separable, then it contains a countable dense subset V = {x, : n € N}.
Obviously, the closed linear span of V coincides with H. First we construct a linear
independent set V which has the same linear span as V by eliminating from V those

xn, which are not linearly independent from {xj,...,x,_1 }. Then the Gram-Schmidt
process gives an orthonormal sequence with the same closed linear span, i.e., it is a
basis by characterisation (e) of Proposition O
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The following theorem shows that all infinite dimensional separable spaces are
isometric. So in some sense ¢2 is essentially the “only” separable infinite-dimensional
space.

Theorem 9.3 Any infinite-dimensional Hilbert space is isometric to (2.
Proof: Let {e;} be an orthonormal basis in H. The map A : H — (* defined by

Au— ((uvel)a (u762)v (u,e3), .- }
is invertible. Indeed, the image of A is in /> due to Lemma |7.12} and the inverse map

is given by

AT () Zxkek.
k=1

The characterisation of a basis in Proposition implies that ||ul|lg = [|A(u)]|p2-
U

Note that there are Hilbert spaces which are not separable.

Example: Let _# be uncountable. The space of all functions f: ¢ — R such that

Y )P <o
i€

is a Hilbert space. It is not separableP__sI

SHow do we define the sum over an uncountable set? Forany n € Nthe set 7, ={j€ ¢ : |f(j)| >
% } s finite (otherwise the sum is obviously infinite). Consequently, the set 7 (f):={je€ 7 :|f(j)| >
0} is countable because it is a countable union of finite sets: _# (f) = U;"_, _#,. Therefore, the number
of non-zero terms in the sum is countable and the usual definition of an infinite sum can be used.
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10 Linear maps between Banach spaces

A linear map on a vector space is traditionally called a linear operator. All linear
functions defined on a finite-dimensional space are continuous. This statement is no
longer true in the case of an infinite dimensional space.

We will begin our study with continuous operators: this class has a rich theory and
numerous applications. We will only slightly touch some of them (the most remarkable
examples will be the shift operators on ¢2, and integral operators and multiplication
operators on L?).

Of course many interesting linear maps are not continuous, i.e., the differential
operator A : f — f’ on the space of continuously differentiable functions. More accu-
rately, let D(A) = C'[0,1] C L?(0, 1) be the domain of A Obviously A : D(A) — L?(0,1)
is linear but not continuous. Indeed, consider the sequence x,,(¢) = n~ ! sin(nt). Obvi-
ously ||x,||;2 < n~! so x, — 0, but A(x,) = cos(nt) does not converge to A(0) = 0 in
the L? norm so A is not continuous.

Some definitions and properties from the theory of continuous linear operators can
be literally extended onto unbounded ones, but sometimes subtle differences appear:
e.g., we will see that a bounded operator is self-adjoint iff it is symmetric, which is
no longer true for unbounded operators. In a study of unbounded operators a special
attention should be paid to their domains.

10.1 Continuous linear maps

Let U and V be vector spaces over K.

Definition 10.1 A function A : U — V is called a linear operator if
Alax+By) = aA(x)+ BA(y)  forallx,yc U and o, € K.

We will often write Ax to denote A(x).
The collection of all linear operators from U to V is a vector space. IfA,B: U —V
are linear operators and a, 8 € K then we define

(aA+ BB)(x) = aAx+ BBx.
Obviously, @A + BB is also linear.

Definition 10.2 A linear operator A : U — V is bounded if there is a constant M such
that
|Ax|ly < M||x||ly  forallx e U. (10.1)

If an operator is bounded, then the image of a bounded set is also bounded.

Lemma 10.3 A linear operator A : U — V is continuous iff it is bounded.
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Proof: Suppose A is bounded. Then there is M > 0 such that
1A(x) =AWl = lA(x = )| < Mljx =y

for all x,y € V and consequently A is continuous.
Now suppose A is continuous. Obviously A(0) = 0. Then for € = 1 there is 6 > 0
such that [|[A(x)|| < € =1 for all ||x|| < §. For any u € U, u # 0,

A = (2||6u|| ) |

‘ = g <oweget||A(u)] < % and consequently A is bounded. O

i 0
Since H 3l 4
The space of all bounded linear operators from U to V is denoted by B(U,V).

Definition 10.4 7he operator norm of A: U — V is

1A (x)|v
HA”B(U,V) = sup .
0 o

We will often write ||Al|op instead of ||Al|pw v)-

Since A is linear
|Allpwyy= sup [[A()]v.

[lxlly=1

We note that [|A|p(yy) is the smallest M such that (10.1) holds: indeed, it is easy to
see that the definition of operator norm implies

A v < lAllsw.v) lIxllw

[Ax(ly
Ixllu

and (10.1) holds with M = ||A|| gy . On the other hand, (10.1) implies M > for

any x # 0 and consequently M > [|A||py v)-

Theorem 10.5 Let U be a normed space and 'V be a Banach space. Then B(U,V) is a
Banach space.

Proof: Let (A,);_, be a Cauchy sequence in B(U,V). Take a vector u € U. The
sequence v, = A,(u) is a Cauchy sequence in V:

[Vn = vinl| = [[An (1) = A (u) | = [[(An — Am) ()| < [|An = Amm|op|u]-

Since V is complete there is v € V such that v, — v. Let A(u) = v.
The operator A is linear. Indeed,

A((Xlul + (quz) = ,}EI;IOA"((XIMI + (quz) = r}gl;lo(OClAn(ul) + O£2An(u2))

= o lim A,u; + o lim A,ur = 0 Aug + oAU, .
n—oo n—oo
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The operator A is bounded. Indeed, A,, is Cauchy and hence bounded: there is constant
M € R such that ||A,||op < M for all n. Taking the limit in the inequality ||A,u|| < M| u|
implies ||Au|| < M||u||. Therefore A € B(U,V).

Finally, A, — A in the operator norm. Indeed, Since A, is Cauchy, for any € > 0
there is N such that ||A, —A,,|lop < € or

|4, (1) —Ap ()| < €]|ull for all m,n > N.
Taking the limit as m — oo
|An (1) —A(u)|| < €lul| foralln > N.

Consequently ||A, —A|| < € and so A, — A. Therefore B(U,V) is complete. O

10.2 Examples
1. Example: Shift operator: T}, T} : £> — (*:

T,(x) = (0,x1,x2,x3,...) and Ti(x) = (x2,x3,X4,...).

Both operators are obviously linear. Moreover,

oo

1Tl = Y bal® = [1xll2.
k=1

Consequently, ||7|lop = 1. We also have

2 V2
1Tl = Y l* < llxll .
k=2

Consequently, [|7j||op < 1. However, if x = (0,x2,x3,X4,...) then ||T;(x)|/,2 =
||| 2. Therefore ||T;||op = 1.

2. Example: Multiplication operator: Let f be a continuous function on |a, b]. The

equation
(Ax)(z) = f(2)x(z)

defines a bounded linear operator A : L?[a,b] — L?[a,b]. Indeed, A is obviously
linear. It is bounded since

b b
ax? =[x R < 171 [ )= £1R]l.

Consequently [|A|lop < || f]|e. Now let 7y be a maximum of f. If 7y # b, consider
the characteristic function

Xe = X1y, 10+€] -
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(If to = b let xg = X[, —e4,]-) Since f is continuous,

Woel L 1" P — P ase—o

lxell € Ji
Therefore ||Al|op = || f]|-
. Example: Integral operator on L?(a,b):

b
(Ax)(1) = / K(t,5)x(s)ds  forallt € [a,b],

where
b b
//]K(s,t)|dsdt<+oo.
a a

Let us estimate the norm of A:
b| b
lAx]? = / / K(t,5)x(s)ds

a a
b/ b b

< / (/ |K(I7S)’2ds/ ]x(s)|2ds) dt (Cauchy-Schwartz)
a a a
b b

- //|K(t,s)|2dsdt||x||2.
a a

Consequently

2
dt

b rb
1Al < / / IK(t,5)Pdsdr

Note that this example requires a bit more from the theory of Lebesgue integrals
than we discussed in Section [5] If you are not taking Measure Theory and feel
uncomfortable with these integrals, you may assume that x,y and K are continu-
ous functions.

10.3 Kernel and range

Definition 10.6 Kernel of A:

KerA={xeU:Ax=0}

Range of A:

RangeA = {y €V : 3x € U such that y = Ax}

We note that 0 € KerA for any linear operator A. We say that KerA is trivial if

KerA ={0}.

Proposition 10.7 IfA € B(U,V) then KerA is a closed linear subspace of U.
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Proof: If x,y € KerA and o, B € K, then
K(ox+By) = aK(x)+BK(y) =0.

Consequently ax + By € KerA and it is a linear subspace. Furthermore if x,, — x and
A(x,) = 0 for all n, then A(x) = 0 due to continuity of A. O

Note that the range is a linear subspace but not necessarily closed (see Examples
3).
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11 Linear functionals

11.1 Definition and examples

Definition 11.1 If U is a vector space then a linear map U — K is called a linear
functional on U,

Definition 11.2 The space of all continuous functionals on a normed space U is called
the dual space, i.e., U* = B(U,K).

The dual space equipped with the operator norm is Banach. Indeed, K =R or C
which are both complete. Then Theorem implies that U* is Banach.

1. Example: 6,(f) = f(x), x € [a,b], is a bounded linear functional on C|a, b].
2. Example: Let ¢ € Cla,b] (or ¢ € L*(a,b)). Then ly(x) = [2¢(t)x(r)dr is a
bounded linear functional on L?(a,b).

11.2 Riesz representation theorem

Let H be a Hilbert space. Then for any y € H

by(x) = (x,y)

is a bounded functional ¢, : H — K (by the Cauchy-Schwartz inequality). The follow-
ing theorem is one of the fundamental results of Functional Analysis: it states that the
map y — ¢, is an isometry between H and its dual space H*.

Theorem 11.3 (Riesz Representation Theorem) Let H be a Hilbert space. For any
bounded linear functional f : H — K there is a unique y € H such that

f(x)=(x,y)  forallx€H.
Moreover, || f|lg+ = ||y||a-

Proof: Let K =Kerf. It is a closed linear subspace of H. If K = H then f(x) =0
for all x and the statement of the theorem is true with y = 0. Otherwise K # {0} and
there is a vector z € K with ||z]|g = 1.

Now we show that dimK~+ = 1. Indeed, let u € K+. Since K= is a linear subspace
v = f(z)u— f(u)z € K*. On the other hand

fO) = f(f(@Du—fu)z) = f(2)f () = f(u)f(z) =0
and so v € K. For any linear subspace K NK+ = {0}, and so v = 0. Then f(z)u —
fwz=v=0,ie u= %z. Consequently {z} is the basis in K.
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Theorem [8.7]implies that every vector x € H can be written uniquely in the form
x=u+v  whereucKandveK™ .

Since K is one dimensional and ||z|| = 1, u = (x,z)z. Moreover,

f) =fu)+fv) = fu) = (x,2)f(2) = (x, f(2)2).

Set y = f(z) z to get the desired equality:

fx) = (x.y).

If there is another y' € H such that f(x) = (x,)’) for all x € H, then (x,y) = (x,y’) for
all x, i.e., (x,y —)') = 0. Setting x =y —y' we conclude ||y —y'||> =0, ie. y=1is
unique.

Finally, the Cauchy-Schwartz inequality implies

FG = 1Cey)| < eyl

ie., || fllas = ||fllop < [|¥||- On the other hand,

SO 1Oyl
o > = = .

Consequently, || £z = ||y||#- =
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12 Linear operators on Hilbert spaces

12.1 Complexification

In the next lectures we will discuss the spectral theory of linear operators. The spectral
theory looks more natural in complex spaces. For example, a part of the theory studies
eigenvalues and eigenvectors of linear maps (i.e. non-zero solutions of the equation
Ax = Ax). In the finite-dimensional space a linear operator can be describe by a ma-
trix. You already know that a matrix (even a real one) can have complex eigenvalues.
Fortunately a real Hilbert space can always be considered as a part of a complex one
due to the “complexification” procedure.

Definition 12.1 Let H be a Hilbert space of R. The complexification of H is the vector
space
He={x+iy: x,yeH}

where the addition and multiplication are respectively defined by

(x+iy)+ (u+iw) = (x+u)+i(y+w)
(a+iB)(x+iy) = (ox—By)+i(oy+Px).

The inner product is defined by

(x4 iy u+iw) = (x,u) —i(x,w) +i(y,u) + (y,w) .
Exercise: Show that Hc is a Hilbert space.
Exercise: Show that ||x + iy||12LI(C = ||x||? + ||y||* for all x,y € H.

The following lemma states that any bounded operator on H can be extended to a
bounded operator on Hc.

Lemma 12.2 Let H be a real Hilbert space and A : H — H be a bounded operator.
Then
Ac(x+iy) = A(x) +iA(y)

is a bounded operator Hc — Hc.

Exercise: Prove the lemma.

12.2 Adjoint operators

Theorem 12.3 IfA : H — H is a bounded linear operator on a Hilbert space H, then
there is a unique bounded operator A* : H — H such that

(Ax,y) = (x,A"y)  forallx,y€ H.

Moreover, ||A*|lop < ||A]|op-
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Proof: Lety € H and f(x) = (Ax,y) for all x € H. The map f : H — K is linear and

[F)I = [(Axy)| < [[Ax[[ ]y ]| < [[Allop[lx[ 1]

where we have used the Cauchy-Schwartz inequality. Consequently, f is a bounded
functional on H. The Riesz representation theorem implies that there is a unique z € H
such that

(Ax,y) = (x,2) forall x € H.

Define the function A* : H — H by A*y = z. Then
(Ax,y) = (x,A™y) for all x,y € H.
First, A* is linear since for any x,y;,y, € H and o, 0p € K

(x, A" (ay1 + ay2)) = (Ax,anyr+ 0y2) = 0 (Ax,y1) + 0 (Ax,y2)
= 1 (x,A"y1)+ @ (x,A%y2) = (x, 1 A"y + A" y;) .

Since the equality is valid for all x € H, it implies
A% (auy1 + 0ny2) = 1Ay + ATy,
Second, A* is bounded since
A2 = (A%, A%) = (AA"y,y) < [AA]| [y]] < 1A Tlop A1 Y]

Dividing by ||A*y|| (do not forget to consider the case A*y = 0 separately), we conclude
that

1Ay < [|Allopll¥Il-
Therefore A* is bounded and [|A*||op < ||A||op- O

Definition 12.4 The operator A* from Theorem is called the adjoint operator.

1. Example: If A : C" — C", then A* is the Hermitian conjugate of A, i.e. if
A* = AT (the complex conjugate of the transposed matrix).

2. Example: Integral operator on L? (0,1)

1
(Ax)(1) = /O K(t,5)x(s)ds

The adjoint operator

a)s) = [ KRG
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Indeed, for any x,y € L?(0,1):

(Axay) =

= (x,A"y).
Note that we used Fubini’s Theorem to change the order of integration.

3. Example: Shift operators: 7,* = T, and T, = T;. Indeed,
(T,JC,y) = Zxk)7k+1 = (X, le> .
k=1

The following lemma states some elementary properties of adjoint operators.

Lemma 12.5 IfA,B: H — H are bounded operators on a Hilbert space H and o, B €
C, then

1. (0A+BB)* = aA* + BB*
2. (AB)* = B*A*

3. (A=A

4. [|aT]| = |A]

5. |A*All = [|AA%| = ||A]1?

Proof: Statements 1—3 follow directly from the definition of an adjoint operator (Ex-
ercise). Statement 4 follows from 3 and the estimate of Theorem [12.3]: indeed,

1A% < [[A]] = [1(A%)"[] < [|A™]].
Finally since
IAx][* = (AX,Ax) = (x,A*Ax) < |[x]| |A*Ax]| < [|A"A]||lx]?

implies ||A||?> < |[AA*|| and on the other hand ||A*A| < ||A*||||A|| = ||A]|%, it follows
that ||A*A|| = ||A]|>. O
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12.3 Self-adjoint operators

Definition 12.6 A linear operator A is self-adjoint, if A* = A.
Lemma 12.7 An operator A € B(H,H) is self-adjoint iff
(x,Ay) = (Ax,y)  forallx,y € H.
1. Example: H = R", a linear map defined by a symmetric matrix is self-adjoint.

2. Example: H = C", a linear map defined by a Hermitian matrix is self-adjoint.

3. Example: A : L?(0,1) — L?(0,1)

1
Af(0) = [ K(t.9)f(s)ds
0
with real symmetric K, K(¢,s) = K(s,t), is self-adjoint.

Theorem 12.8 Let A be a self-adjoint operator on a Hilbert space H. Then all eigen-
values of A are real and the eigenvectors corresponding to distinct eigenvalues are
orthogonal.

Proof: Suppose Ax = Ax with x # 0. Then
Allel* = (Ax,x0) = (Ax,x) = (x,A"x) = (x,A%) = (x,Ax) = L[|

Consequently, A is real.
Now if A; and A, are distinct eigenvalues and Ax; = Ajx;, Ax; = Axy, then

0 = (Ax1,x2) — (x1,Ax2) = (A1x1,x2) — (x1,A2x2) = (A1 — A2) (x1,x2).
Since A; — A, # 0, we conclude (x,x2) = 0. O

Exercise: Let A be a self-adjoint operator on a real space. Show that the complexifi-
cation of A is also self-adjoint and has the same eigenvalues as the original operator
A.

Theorem 12.9 If A is a bounded self-adjoint operator then
1. (Ax,x) is real for all x € H

2. [|Allop = SUp|x||=1 |(Ax, x)|
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Proof: For any x € H

(Ax,x) = (x,Ax) = (Ax,x)

which implies (Ax,x) is real. Now let

M = sup |(Ax,x)|.
[lxf=1

The Cauchy-Schwartz inequality implies
| (A, )| < [[Ax]| [1x]] < 1A loplIXII* = 1A]lop

for all x € H such that ||x|| = 1. Consequently M < ||A||op. On the other hand, for any
u,v € H we have

4Re(Au,v) = (A(u+v),u+v)—(A(u—v),u—v)
< M (Jlutv])+ [lu—v]?)
= 2M (Jlul*+IvII*)

using the parallelogram law. If Au # 0 let

_ ]

v= Au
[Aul]

to obtain, since ||u|| = ||v||, that
2
oal 1 Auel] < M| aa]| 7

Consequently ||Au|| < M||u|| (for all u, including those with Au = 0) and ||Al|,p < M.
Therefore ||A||op = M. O
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Unbounded operators and their adjoint operators )

The notions of adjoint and self-adjoint operators play an important role in the general
theory of linear operators. If an operator is not bounded a special care should be taken
in the consideration of its domain of definition.

Let D(A) be a linear subspace of a Hilbert space H, and A : D(A) — H be a linear
operator. If D(A) is dense in H we say that A is densely defined.

Example: Consider the operator A(f) = % on the set of all continuously differentiable

functions, i.e., D(A) = C'[0,1] € L?(0,1). This operator is densely defined.

Given a densely defined linear operator A on H, its adjoint A* is defined as follows:

e D(A*), the domain of A*, consists of all vectors x € H such that

y = (x,Ay)

is a continuous linear functional D(A) — K. By continuity and density of D(A),
it extends to a unique continuous linear functional on all of H.

e By the Riesz representation theorem, if x € D(A*), there is a unique vector z € H
such that
(x,Ay) = (z,y) forally € D(A).

This vector z is defined to be A*x.

It can be shown that the dependence of A* : D(A*) — H is linear.

Note that two properties play a key role in this definition: the density of the domain
of A in H, and the uniqueness part of the Riesz representation theorem.

A linear operator is symmetric if (Ax,y) = (x,Ay) for all x,y € D(A). From this
definition we see that D(A) C D(A*) and symmetric A coincides with the restriction of
A* onto D(A). An operator is self adjoint if A = A*, i.e., it is symmetric and D(A) =
D(A*). In general, the condition for a linear operator on a Hilbert space to be self-
adjoint is stronger than to be symmetric. If an operator is bounded then it is normally
assumed that D(A) = D(A*) = H and therefore a symmetric operator is self-adjoint.

The Hellinger-Toeplitz theorem states that an everywhere defined symmetric oper-
ator on a Hilbert space is bounded.

160ptional topic
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13 Introduction to Spectral Theory

13.1 Point spectrum

Let H be a complex Hilbert space and A : H — H a linear operator. If Ax = Ax for
some x € H, x # 0, and A € C, then A is an eigenvalue of A and x is an eigenvector.

The space
E)={x€H:Ax=Ax}

is called the eigenspace.

Exercise: Prove the following: If A € B(H,H) and A is an eigenvalue of A, then E is
a closed linear subspace in H. Moreover, E), is invariant, i.e., A(E) ) = Ej.

Definition 13.1 The point spectrum of A consists of all eigenvalues of A:
0p(A) ={A € C:Ax=Ax for somex € H, x #0}.
Proposition 13.2 IfA : H — H is bounded and A is its eigenvalue then

4] < [|Allop-
Proof: If Ax = Ax with x # 0, then
|Ay[| _ [|Ax]]
[|Allop = sup ==+ > = [A]. O
w20 Il il

Examples:

1. A linear map on an n-dimensional vector space has at least one and at most n
different eigenvalues.

2. The right shift 7, : 2 — (2 has no eigenvalues, i.e., the point spectrum is empty.
Indeed, suppose T,x = Ax, then

(0,x1,x2,x3,X4,...) = A (x1,%2,X3,X4,...)

implies 0 = Ax, x; = Axp, xp = Ax3,... If A # 0, we divide by A and conclude
x1=xp=---=0.If L =0 we also get x = 0. Consequently

o,(T;) =0.
3. The point spectrum of the left shift 7; : #2 — ¢? is the open unit disk. Indeed,
suppose Tjx = Ax with A € C. Then
(x27x37x47 .. ) = A(-)(*-17-)6279637)647 . )

is equivalent to xp = Ax1, x3 = Ax, x4 = Ax3,... Consequently, x = (x; )7, with
xp = Ak~ 1y for all k > 2. This sequence belongs to ¢? if and only if Y3 |x;|> =
Y, [x1||2]?* converges or equivalently || < 1. Therefore

6)(T) ={AeC:[A|<1}.
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13.2 Invertible operators
Let us discuss the concept of an inverse operator.

Definition 13.3 (injective operator) We say that A :U — V is injective if the equation
Ax =y has a unique solution for every y € Range(A).

Definition 13.4 (bijective operator) We say that A:U — V is bijective if the equation
Ax =y has exactly one solution for everyy € V.

Definition 13.5 (inverse operator) We say that A is invertible if it is bijective. Then
the equation Ax =y has a unique solution for all y € V and we define A~y = x.

1. Exercise: Show that A~! is a linear operator.
2. Exercise: Show that if A~! is invertible, then A~! is also invertible and
A H 1 =A.
3. Exercise: Show that if A and B are two invertible linear operators, then AB is
also invertible and (AB)~! =B~ 141,
Proposition 13.6 A linear operator A : U — V is invertible iff
Ker(A) ={0} and Range(A) =V.

Exercise: prove the proposition.

We will use Iy : V — V to denote the identity operator on V, i.e., Iy (x) = x for all
x € V. Moreover, we will skip the subscript V' if there is no danger of a mistake. It is
easy to see thatif A : U — V is invertible then

AAT =1, and A 'A=1.

Example: The right shift 7} : £ — ¢? has a trivial kernel and
T, =1.

but it is not invertible since Range(7}) # ¢°. (Indeed, any sequence in the range of T,
has a zero on the first place). Consequently, the equality AB = I along does not imply
that B=A"1.

Lemma 13.7 IfA:U — V and B :V — U are linear operators such that
AB=1Iy and BA =1y
then A and B are both invertible and B = A~

Proof: The equality ABy =y for all y € V implies that KerB = {0 } and RangeA = V.
On the other hand BAx = x for all x € U implies KerA = {0} and RangeB = U.
Therefore both A and B satisfy the definition of invertible operator. U
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13.3 Resolvent and spectrum

Let A :V — V be a linear operator on a vector space V. A complex number A is an
eigenvalue of A if Ax = Ax for some x # 0. This equation is equivalent to (A — A1)x =0.
Then we immediately see that A — Al is not invertible since 0 has infinitely many
preimages: ocx with a € C.

If V is finite dimensional the reversed statement is also true: if A — A[ is not invert-
ible then A is an eigenvalue of A (recall the Fredholm alternative from the first year
Linear Algebra). In the infinite dimensional case this is not necessarily true.

Definition 13.8 (resolvent set and spectrum) The resolvent set of a linear operator
A :H — H is defined by

RA) ={AeC:(A-Al"'€B(H,H)}.

The resolvent set consists of regular values. The spectrum is the complement to the
resolvent set in C:

o(A) = C\R(A).

Note that the definition of the resolvent set assumes existence of the inverse opera-
tor (A—AI)"!for A € R(A). If A € 6,,(A) then (A — A1) is not invertible. Consequently
any eigenvalue A € 6(A) and

o,(A) Co(A).

The spectrum of A can be larger than the point spectrum.

Example: The point spectrum of the right shift operator 7, is empty but since
Range 7, # £? it is not invertible and therefore 0 € 6(7;). So 6,(T;) # o(T;).

Technical lemmas
Lemma 13.9 IfT € B(H,H) and ||T|| < 1, then (I —T)~' € B(H,H). Moreover
(I-T) '=I+T+T1T>+73+...

and
-1 <a—=|TH".

Proof: Consider the sequence V,, = I+ T +T? 4 --- 4 T". Since
-1
1Tl < [ITJT" x|

we conclude that ||7"]] < ||T||". Consequently for any m > n we have

[V =Vall = HTn+1+Tn+2+"'+TmH
< TP TR A T
[t A i [
L=l 1=l
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Since ||T|| < 1, V, is a Cauchy sequence in the operator norm. The space B(H,H) is
complete and there is V € B(H,H) such that V,, — V. Moreover,

VI ST+ IT I+ TP+ = =TI
Finally, taking the limit as n — oo in the equalities

%&I__T)::v%__v%T::I_'Tn+la
(I-=T)V,=V, =TV, =I1-T""

and using that 7"*! — 0 in the operator norm we get V(I —T) = (I - T)V = I.
Lemma implies (I -T)"!' =V. O

Lemma 13.10 Let H be a Hilbert space and T,T~' € B(H,H). IfU € B(H,H) and
|U|| < [|T~||~", then the operator T 4 U is invertible and

I
= oI

Ir+u)' <

Proof: Consider the operator V =TT +U) =1+T~'U. Since
~1 ~1
17Ul < It~ [[U] <1,
Lemma[I3.9]implies that V is invertible and
-1 -1 -1
V=< =Tl -
Moreover, since both V and T are invertible
I=vlv=v-lr (T4 0U)
implies that T 4 U is invertible with
(T+U0)t=v-Iir~!,

Finally, ||(T +U)~Y| < |[V=Y|||IT~"|| implies the desired upper bound for the norm of
the inverse operator. 0
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Properties of the spectrum
Lemma 13.11 IfA is bounded and A € 6(A) then A € ¢(A*).

Proof: If A € R(A) then A — AI has a bounded inverse:
A-ADA-AN"'=I=(A-AD)"YA-AI).
Taking adjoints we obtain
(A=A (A=A =1=A"—A) (A-AD)~1)".

Consequently, (A* — A1) has a bounded inverse (A—a1 )’1)* (an adjoint of a bounded

operator). Therefore A € R(A) iff L € R (A*). Since the spectrum is the complement
of the resolvent set we also get A € 6(A) iff L € 6(A™). O

Proposition 13.12 If A is bounded and A € c(A) then |A| < ||Al|,p.

Proof: Take A € C such that |A| > ||Aop. Since |[A71A||op < 1 Lemma [13.9|implies
that / — A ~'A is invertible and the inverse operator is bounded. Consequently, A — A1 =
—A(I—A~'A) also has a bounded inverse and so A € R(A). The proposition follows
immediately since 6(A) is the complement of R(A). O

Proposition 13.13 If A is bounded then R(A) is open and 6 (A) is closed.

Proof: Let A € R(A). Then T = (A — AI) has a bounded inverse. Set U = —4lI.
Obviously, ||U|| = |6]. If

sl< |7
Lemma [13.10| implies that 7+ U = A — (A + §)I also has a bounded inverse and so
A+ 98 €R(A). Consequently R(A) is open and 6(A) = C\ R(A) is closed. O

Example: The spectrum of 7; and of 7, are both equal to the closed unit disk on the
complex plane.

Indeed, 0,,(T;) ={A € C:|A| < 1}. Since 6,(T;) C 6(T;) and 6(T;) is closed, we
conclude that 6(7;) includes the closed unit disk. On the other hand, Proposition|13.12
implies that o(7;) is a subset of the closed disk |A| < ||T;||op = 1. Therefore

o(T))={AeC:|A|<1}.

Since T, = T;* and o(7;) is invariant, Lemma |13.11|implies 6(7;) = o(T;).
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13.4 Compact operators

Definition 13.14 Let X be a normed space and Y be a Banach space. Then a linear
operator A : X — Y is compact if the image of any bounded sequence has a convergent
subsequence.

Obviously a compact operator is bounded. Indeed, otherwise there is a sequence
xn With ||x,|| = 1 such that ||Ax,|| > n for each n. The sequence Ax, does not contain
a convergent subsequence (it does not even contain a bounded subsequence) and so is
not sequentially compact.

Lemma 13.15 Let X be a normed space and Y be Banach. A linear operator A : X —
Y is compact iff the image of the unit sphere is sequentially compact.

Example: Any bounded operator with finite-dimensional range is compact. Indeed, in
a finite dimensional space any bounded sequence has a convergent subsequence.

Theorem 13.16 If X is a normed space and Y is a Banach space, then compact linear
operators form a closed linear subspace in B(X,Y).

Proof: If K1, K, are compact operators and a1, o € K, then o K| 4+ 04 K; is also com-
pact. Indeed, take any bounded sequence (x,) in H. There is a subsequence Xny
such that Kjx,,; converges. This subsequence is also bounded, so it contains a subse-
quence xp,; such that sznzj converges. Obviously lenzj also converges and therefore
0 K1 Xn,; + 02 Ko Xn,, is convergent and consequently o K| + 0K, is compact There-
fore the compact operators form a linear subspace.

Let us prove that this subspace is closed. Let K, be a convergent sequence of
compact operators: K, — K in B(H,H). Take any bounded sequence (x,) in X. Since
K is compact, there is a subsequence Xny such that lenlj converges. Since Xny is
bounded and K, is compact, there is a subsequence Xny such that Koxy,; converges.
Repeat this inductively: for each k there is a subsequence X, ; of the original sequence
such that Kjx,, ; converges as j — oo forall [ <.

Consider the diagonal sequence y; = x,,;. Obviously (y j);f’:k is a subsequence of
(xnkj);":l. Consequently K;y; converges as j — oo for every /.

In order to show that K is compact it is sufficient to prove that Ky; is Cauchy:

|Ky; — Ky 1Ky — Knyjl| + | Knyj — Knyi|| + || Kyi — Kuyi |

<
< K=Kl (Il + 1yll) + 1Knyj — Knyill -

Given € > 0 choose n sufficiently large to ensure that the first term is less than £,

then choose N sufficiently large to guarantee that the second term is less than £ for
all j,I > N. So Ky; is Cauchy and consequently converges. Therefore K is a compact
operator, and the subspace formed by compact operators is closed. U
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Proposition 13.17 The integral operator A : L*(a,b) — L*(a,b) defined by

(Af)(t):/abK(t,s)f(s)ds with /ab/ab]K(t,s)lzdsdt<oo

is compact.

Proof: Let { ¢ : k € N} be an orthonormal basis in L?(a,b). Let kjx = (A@;, ¢;) and
n € N, and define an operator

A=Y Y xi(f,0) 0.
k=1 j=1

Obviously dimRange(A,) = n and consequently A, is compact. In order to complete
the proof we need to show that A, — A in the operator norm U

17We will not discuss this proof further.
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13.5 Spectral theory for compact self-adjoint operators

Lemma 13.18 Let H be an infinitely dimensional Hilbert space and T : H — H a

compact self-adjoint operator. Then at least one of A+ = £||T ||, is an eigenvalue of
T.

Proof: Assume T # 0 (otherwise the lemma is trivial). Since

||T||0p = sup |(Tx,x)|

[lxll=1

there is a sequence x,, € H such that ||x,|| = 1 and (T'x,,x,) — %||T||op = &. Since T
is compact, y, = Tx, has a convergent subsequence. Relabel this subsequence as x,
and let y = lim,,_,, T'x;;. Then

1T x, — 0 || = || Txa||* — 20(Txp, ) + 02 < 2062 —200(Tx, %) -

The right hand side converges to 0 as n — oo. Consequently Tx,, — &tx,, — 0. On the
other hand Tx, — y and consequently

xn—>x:OF1y.

The operator T is continuous and consequently 7x = owx. Finally, since ||x,|| = 1 for
all n, we have ||x|| = 1, and consequently « is an eigenvalue. O

Proposition 13.19 Let H be an infinitely dimensional Hilbert space and T : H — H
a compact self-adjoint operator. Then o,(T) is either a finite set or countable se-
quence tending to zero. Moreover, every non-zero eigenvalue corresponds to a finite
dimensional eigenspace.

Proof: Suppose there is € > 0 such that 7" has infinitely many different eigenvalues
with |A,| > €. Let x,, be corresponding eigenvectors with ||x,|| = 1. Since the operator
is self-adjoint, this sequence is orthonormal and for any n # m

|Tx0 = Txmll? = || AnXn — A ||*

Consequently, (Tx,) does not have a convergent subsequence. This contradicts to
the compactness of 7. Consequently, ,(7') is either finite or a converging to zero
sequence.

Now let A # 0 be an eigenvalue and E, the corresponding eigenspace. Let A :
E; — E, be the restriction of A onto E;. Since Ax = Ax for any x € E,, the operator
A maps the unit sphere into the sphere of radius A. Since A is compact, the image of
the unit sphere is sequentially compact. Therefore the sphere of radius A is compact.
Since E) is a Hilbert (and consequently Banach) space itself, Theorem [3.23| implies
that E, is finite dimensional. U
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Theorem 13.20 (Hilbert-Schmidt theorem) Let H be a Hilbert space and T : H — H
be a compact self-adjoint operator. Then there is a finite or countable orthonormal
sequence (ey) of eigenvectors of T with corresponding real eigenvalues (A,) such that

Tx:le(x,ej)ej forall x € H.
J

Proof: We construct the sequence e; inductively. Let Hy = H and T} =T : H —
H,. Lemma|[13.18]implies that there is an eigenvector e; € H; with ||e;|| = 1 and an
eigenvalue A; € R such that 4| = |71 || p(a, 1, )-

Then let H, = {x € H, : x L e} }. If x € H, then Tx € H;. Indeed, since T is self
adjoint

(Tx,ey) = (x,Tey) = A1(x,e1) =0

and Tx € H. Therefore the restriction of 7 onto H, is an operator 15 : Hy — H».
Since H, is an orthogonal complement, it is closed and so a Hilbert space itself.
Lemma [13.18]implies that there is an eigenvector e, € H, with ||le;|| = 1 and an eigen-
value 4, € R such that || = || T2 || (s ,)- Then let H3 = {x € Hy : x | e } and repeat
the procedure as long as 7, is not zero.

Suppose T,, = 0 for some n € N. Then for any x € H let

n—1

y=x— Z(x,ej)ej.

=

Applying T to the equality we get:

n—1 n—1
Ty=Tx— Z(x,ej)Tej =Tx— Z(x,ej)ljej.
=1 =

Since y L e; for j < n we have y € H,, and consequently Ty = T,y = 0. Therefore

n—1

Tx= Z(x,ej)kjej

j=1

which is the required formula for 7.
Suppose T, # 0 for all n € N. Then for any x € H and any n consider

n—1
Yn=x—Y (x.ej)e;.
j=1
Since y, L e; for j <n we have y € H,, and
2 v 2
Il = llyall* + ) [(x.e))]
j=1
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implies ||y,||* < ||x||*>. On the other hand

n—1
Tx— Y (x,ej)Ajej|| = Tyall < | Tull lynll < 2] x|
j=1

and since A,, — 0 as n — oo we have

[}

Tx= Z(x,ej)ljej. O
=1

Corollary 13.21 Let H be an infinite dimensional separable Hilbert space and T :
H — H a compact self-adjoint operator. Then there is an orthonormal basis E = { e; :
J € N}in H such that Tej = Aje; for all j € N and

Tx= le(x,ej)ej forallx € H.
j=1
Exercise: Deduce that operators with finite range are dense among compact self-
adjoint operators.

Theorem 13.22 If H is an infinite dimensional Hilbert space and T : H — H is a
compact self-adjoint operator, then o(T) = o,(T).

Propositionimplies that zero is the only possible limit point of 6,,(T'). There-
fore the theorem means that either (7)) = 6,(T) or 6(T) = 6,(T) U{0}. In partic-
ular, o(T) = 6,(T) if zero is an eigenvalue. Note that if zero is not an eigenvalue,
then there is a sequence of eigenvalues which accumulates to zero since H is infinite
dimensional.

Proof: According to the Hilbert-Schmidt theorem

o)

Tx= Z Ai(x,ej)e;

j=1
where {¢; } is an orthonormal basis in H{°| Thenx = Y7, (x,¢;)e; and for any pu € C

(o)

(T—uhx =Y (A;—u)(x.e))e;.

Jj=1

8The proof uses a countable basis in H, therefore it assumes that H is separable. The theorem remain
valid for a non-separable H but the proof should be slightly modified. The modification is based on the
following observation: Proposition implies that (Ker7')* has a countable orthonormal basis of
eigenvectors {e;}. Then for any vector x € H write x = Pgerr (x) + Yl (x,ej)e;j where Pgerr is the
orthogonal projection on the kernel of T. Then follow the arguments of the proof (adding gt~ Per7(y)
to the definition of \S).
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Let u € C\ 0,(T) which is an open subset of C. Consequently there is € > 0 such that
|u—A| > eforall A € 6,(T) C 0,(T). Consider an operator S defined by

i y7ek)

,u

Lemma implies that the series converges since |A; — | > € and

Iyl =},

k=1

(yaek)
Me—

e 2 _
<e?Y |e)l” =e72ylI*.
j=k

In particular we see that S is bounded with ||S||op < £~ !. Moreover S = (T — ul)~!
Indeed,

(o) (o) A._“
(T—uh)Sy =}, (4 —)(Sy.ej)ej = Y ~—(v.ej)e; =y
j=1 =R
and ((T ) N
wl)x ej
S(T —ul)x = = (x,ej)e; =x.
Then S = (T —ul)~! and u € R(T), and so G( ) € 6,(T). On the other hand,
0,(T) C o(T). We conclude o(T) = 6,(T). O
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14 Sturm-Liouville problems

In this chapter we will study the Sturm-Liouville problem:

_% (p(x)j—l;) +q(x)u=Au with u(a) =u(b) =0

where p and ¢ are given function. The values of A for which the problem has a non-
trivial solution are called eigenvalues of the Sturm-Liouville problem and the corre-
sponding solutions u are called eigenfunctions. We will prove that the eigenfunctions
form an orthonormal basis in L?(a, b).

We assume that p € C![a,b], g € C[a,b] and

p(x)>0 and g(x)>0  forx€ [a,b].
For a function u € C?[a, b] we define

d du

Lw=-12 (ma) T4

Obviously L : C?[a,b] — C°[a,b] is linear. We will see that Range L = C°[a,b] and
Ker L = Span{ u;,u; } where uj,u; are two linear independent solutions of the equation
Lu = 0. Therefore the operator is not invertible.

We will restrict L onto the space

D(L) := {u € C*[a,b] : u(a) =u(b) =0}

and show that L : D(L) — C°[a, b] is invertible. We will prove that L~ is a restriction
on RangeL of a compact self-adjoint operator A : L?>(a,b) — L*(a,b). The Sturm-
Liouville theorem states that the eigenfunction of A form an orthonormal basis in
L?(a,b). Moreover, we will see that A and L have the same eigenfunctions.

Lemma 14.1 If both u, and u; are solutions of the equation Lu = 0, then
W (a1, u2) (x) = p(x) (uf (x)ua (x) — 1 (x)ut5 (x))
is constant. Moreover, the solutions u and u; are linearly independent iff
Wy (ur,uz) # 0.

Proof: The equation Lu = 0 implies pu” = —p'u’ + qu. Then differentiate W with
respect to x:

W, = p(uus —uguy) + p(ufuz — uyu3)

= p'(dur — uyuy) + ((—p'uly + qui )up — (—p'tty + quo)uy ) = 0.
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Therefore W), is constant.
Finally, since p # 0, W, = 0 implies u (x)uz(x) — u; (x)u}, (x) = 0 for all x. Conse-
quently at all points where u and u> do not vanish

Wy uh din|ui|  dInfuy|

_1 _< = — ,

up U dx dx
which implies that u; = Cu, for some constant C, i.e., if W, = 0 then u; and u» are not
linearly independent. In the reverse direction the statement is straightforward. U

Lemma 14.2 The equation Lu = 0 has two linearly independent solutions, uy,u; €
C?[a,b), such that uy(a) = uy(b) = 0.

Proof: Let uy,u; be solutions of the Cauchy problems

Luy = 0 ui(a) =0, uy(a) =1,
Luy = 0 ur(b) =0, u(b) =1.

According to the theory of linear ordinary differential equations u; and u; exist, belong
to C?[a,b] and are unique.

Moreover, u; and u; are linearly independent. Indeed, suppose Lu = 0 for some
u € C?[a,b] such that u(a) = u(b) = 0. Then

0= (Lu,u) = /ab(—(pu’)'u+qu2) dx
= plou (x)u(x)

_ /ab (p(u/)2+qu2) dx

Since p > 0 on [a,b], we conclude that «’ = 0. Then u(a) = u(b) = 0 implies u(x) =0
for all x € [a,b].
Consequently since uy(b) = 0 and u; is not identically zero, uy(a) # 0 and so
W (ur,u2) = p(a) () (a)uz(a) — ur(a)us(a)) = p(a)uy (a)u(a) # 0.

Therefore u1,u; are linearly independent by Lemma|14.1 U

b b
+ / (p( 2+ quz) dx (integration by parts)
a a

Proposition 14.3 If u; and u; are linearly independent solutions of the equation Lu =
0 such that uy(a) = up(b) = 0 and

L mua(y), a<x<y<b,
W (up,uz) | w(y)uz(x), a<y<x<b,

then for any f € C%[a,b] the function
b
ux) = [ Gley)f()dy

belongs to C*[a,b], satisfies the equation Lu = f and the boundary conditions u(a) =
u(b) =0.

G<x7y) =
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Proof: The statement is proved by a direct substitution of

20 st 5t ) re)a

ux) = ———— —
() Wp(ul,uz) a Wp(“la“Z) x

into the differential equation. Moreover, since u) (a) = ua(b) =0, we get u(a) = u(b) =
0. U

Lemma 14.4 The operator A : L*(a,b) — L?(a,b) defined by

- [t soa

is compact and self-adjoint. Moreover, RangeA is dense in L*>(a,b), KerA = {0} and
all its eigenfunctions, Au = pu, belong to C*[a,b] and satisfy u(a) = u(b) = 0.

Proof: The operator A is compact by Proposition Moreover, G is symmetric
and so A is self-adjoint. Proposition |14.3|implies the range of A contains all functions
from C?[a, b] such that u(a) = u(b) = 0. This set is dense in L?(a,b).

Now suppose Au = 0 for some u € L*[a,b]. Then for any v € L?

0= (Au,v) = (u,Av),

which implies u = 0 because u is orthogonal to a dense set.
Finally, let u be an eigenfunction of A, i.e., Au = pu. Since u # 0 we can write
= u'Au = u=2A%u. A priori u € L*(a,b), then Au is continuous and A%u is C?.
Therefore, the eigenvectors of A are smooth. O

Proposition 14.5 The operator L : D(L) — C°[a,b] has a bounded inverse (in the op-
erator norm induced by the L* norm on both spaces).

Proof: Lemma [14.2|implies that KerL = {0}. Consequently, L is injective. Proposi-
tion |14.3|implies that Range L = C%[a, b] and the inverse operator is defined by

-1 . b
L7 1)w = [ Genre)dy.

Lemma states that this operator is bounded. In other words, L~! coincides with
the restriction of A onto RangeL. U

Theorem 14.6 The cigenfunctions of the Sturm-Liouville problem form an orthonor-
mal basis in L*(a,b).
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Proof: Since A : L*(a,b) — L*(a,b) is compact and self adjoint, Theorem im-
plies that its eigenvectors form an orthonormal basis in Lz(a, b). If u is an eigenfunc-
tion of A, then Au = pu, u # 0 and u € C*[a,b]. Consequently Lu = Au = p " 'u, i.e.,
u is also an eigenvector of L which corresponds to the eigenvalue A = u~". U

Example: An application for Fourier series. Consider the Strum-Liouville problem

d*u

—E:/lu, u(0) =u(1)=0.

It corresponds to the choice p = 1, ¢ = 0. Theorem [[4.6]implies that the normalised
eigenfunctions of this problem form an orthonormal basis in L?(0, 1). In this example
the eigenfunctions are easy to find:

1
—sinknx: ke N ;.
{ﬁ }

Consequently any function f € L?(0,1) can be written in the form

f(x) =Y oysinkmx
k=1
where

1 1
o= /0 F(x) sinkmxdsx.

The series converges in the L? norm.
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